首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commercial production of mannitol involves high-pressure hydrogenation of fructose using a nickel catalyst, a costly process. Mannitol can be produced through fermentation by microorganisms. Currently, a few Lactobacillus strains are used to develop an efficient process for mannitol bioproduction; most of the strains produce mannitol from fructose with other products. An approach toward improving this process would be to genetically engineer Lactobacillus strains to increase fructose-to-mannitol conversion with decreased production of other products. We cloned the gene mtlK encoding mannitol-2-dehydrogenase (EC 1.1.1.67) that catalyzes the conversion of fructose into mannitol from Lactobacillus brevis using genomic polymerase chain reaction. The mtlK clone contains 1328 bp of DNA sequence including a 1002-bp open reading frame that consisted of 333 amino acids with a predicted molecular mass of about 36 kDa. The functional mannitol-2-dehydrogenase was produced by overexpressing mtlK via pRSETa vector in Escherichia coli BL21pLysS on isopropyl-β-d-thiogalactopyranoside induction. The fusion protein is able to catalyze the reduction of fructose to mannitol at pH 5.35. Similar rates of catalytic reduction were observed using either the NADH or NADPH as cofactor under in vitro assay conditions. Genetically engineered Lactobacillus plantarum TF103 carrying the mtlK gene of L. brevis indicated increased mannitol production from glucose. The evaluation of mixed sugar fermentation and mannitol production by this strain is in progress. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the names by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

2.
Mutation of a single active-site cleft tyrosyl residue to a glycyl residue significantly changes the mixture of products released from phosphoric acidswollen cellulose (PSC) by EIcd, the catalytic domain of the endoglucanase-I from Acidothermus cellulolyticus. The percentage of glucose in the product stream is almost 40% greater for the Y245G mutant (and for an additional double mutant, Y245G/Q204A) than for the wild type enzyme. Comparisons of results for digestion PSC and of pretreated yellow poplar suggest that the observed shifts in product specificity are connected to the hydrolysis of a more easily digestible fraction of both substrates. A model is presented that relates the changes in product specificity to a mutation-driven shift in indexing of the polymeric substrate along the extended binding-site cleft.  相似文献   

3.
Xylanase is an enzyme that catalyzes the hydrolysis of xylan, a -1,4-linked xylose polymer. Alkaliphilic Bacillus sp. strain 41M-1 secretes a xylanase (xylanase J) that has an alkaline pH optimum. Xylanase J is a multidomain enzyme and consists of two functional domains: a family 11/G catalytic domain and a non-catalytic xylan-binding domain. The xylan-binding domain bound to xylan and enhanced catalytic activity of the adjacent catalytic domain. Mutational analyses revealed some amino acid residues that contribute to catalytic activity, alkaliphily and xylan-binding activity of xylanase J.  相似文献   

4.
Two new ethanologenic strains (FBR4 and FBR5) of Escherichia coli were constructed and used to ferment corn fiber hydrolysate. The strains carry the plasmid pLO1297, which contains the genes from Zymomonas mobilis necessary for efficiently converting pyruvate into ethanol. Both strains selectively maintained the plasmid when grown anaerobically. Each culture was serially transferred 10 times in anaerobic culture with sugar-limited medium containing xylose, but noselective antibiotic. An average of 93 and 95% of the FBR4 and FBR5 cells, respectively, maintained pLO1297 in anaerobic culture. The fermentation performances of the repeatedly transferred cultures were compared with those of cultures freshly revived from stock in pH-controlled batch fermentations with 10% (w/v) xylose. Fermentation results were similar for all the cultures. Fermentations were completed within 60 h and ethanol yields were 86–92% of theoretical. Maximal ethanol concentrations were 3.9–4.2% (w/v). The strains were also tested for their ability to ferment corn fiber hydrolysate, which contained 8.5% (w/v) total sugars (2.0% arabinose, 2.8% glucose, and 3.7% xylose). E. coli FBR5 produced more ethanol than FBR4 from the corn fiber hydrolysate. E. coli FBR5 fermented all but 0.4% (w/v) of the available sugar, whereas strain FBR4 left 1.6% unconsumed. The fermentation with FBR5 was completed within 55 h and yielded 0.46 g of ethanol/g of available sugar, 90% of the maximum obtainable. Author to whom all correspondence and reprint requests should be addressed. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA im plies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
The synthetic route to (2E,4E,6E)-5-ethyl-3-methyl-2,4,6-nonatriene, the aggregation pheromone of the Freeman sap beetle, Carpophilus freemani Dobson (Coleoptera: Nitidulidae), has been improved in terms of 6E isomer selectivity by the use of tetra-n-propyltriphenylphosphonium bromide in the final Wittig reaction. Separation of the 6E-isomer from undesired 6Z-isomer can be accomplished on a preparative scale by HPLC using a silica column with hexane as the elution solvent. This chromatographic method was also used to purify the aggregation pheromone of the dusky sap beetle, Carpophilus lugubris Murray.

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

6.
Filamentous fungi secrete various oxidative enzymes to degrade the glycosidic bonds of polysaccharides. Cellobiose dehydrogenase (CDH) (E.C.1.1.99.18) is one of the important lignocellulose degrading enzymes produced by various filamentous fungi. It contains two stereo specific ligand binding domains, cytochrome and dehydrogenase - one for heme and the other for flavin adenine dinucleotide (FAD) respectively. The enzyme is of commercial importance for its use in amperometric biosensor, biofuel production, lactose determination in food, bioremediation etc. Termitomyces clypeatus, an edible fungus belonging to the basidiomycetes group, is a good producer of CDH. In this paper we have analyzed the structural properties of this enzyme from T. clypeatus and identified a distinct carbohydrate binding module (CBM) which is not present in most fungi belonging to the basidiomycetes group. In addition, the dehydrogenase domain of T. clypeatus CDH exhibited the absence of cellulose binding residues which is in contrast to the dehydrogenase domains of CDH of other basidiomycetes. Sequence analysis of cytochrome domain showed that the important residues of this domain were conserved like in other fungal CDHs. Phylogenetic tree, constructed using basidiomycetes and ascomycetes CDH sequences, has shown that very surprisingly the CDH from T. clypeatus, which is classified as a basidiomycetes fungus, is clustered with the ascomycetes group. A homology model of this protein has been constructed using the CDH enzyme of ascomycetes fungus Myricoccum thermophilum as a template since it has been found to be the best match sequence with T. clypeatus CDH. We also have modelled the protein with its substrate, cellobiose, which has helped us to identify the substrate interacting residues (L354, P606, T629, R631, Y649, N732, H733 and N781) localized within its dehydrogenase domain. Our computational investigation revealed for the first time the presence of all three domains - cytochrome, dehydrogenase and CBM - in the CDH of T. clypeatus, a basidiomycetes fungus. In addition to discovering the unique structural attributes of this enzyme from T. clypeatus, our study also discusses the possible phylogenetic status of this fungus.  相似文献   

7.
The catalytic activity of montmorillonite clays as a catalyst for the hydroamination of α,β-ethylenic compounds with amines was tested. Aniline and substituted anilines reacted with α,β-ethylenic compounds in the presence of catalytic amount of commercially available clay to afford exclusively anti-Markovnikov adduct in excellent yields. Aniline reacted with ethyl acrylate to yield only anti-Markovnikov adduct N-[2-(ethoxycarbonyl)ethyl]aniline (mono-addition product). No Markovnikov adduct (N-[1-(ethoxycarbonyl)ethyl]aniline and double addition product N,N-bis[2-(ethoxycarbonyl)ethyl]aniline were formed under selected reaction conditions. For a better exploitation of the catalytic activity in terms of increased activity and improved selectivity for the mono-addition product, the reaction parameters were optimized in terms of temperature, solvent, reactant mole ratio. Under optimized reaction conditions, montmorillonite clay K-10 showed a superior catalytic performance in the hydroamination of ethyl acrylate with aniline with a conversion of aniline to mono-addition product (almost 100% chemoselectivity) with a high rate constant 0.3414 min−1 compared to the reported protocols. The dependence of conversion of aniline over different types of montmorillonite clays (K-10, K-20, K-30, Al-Pillared clay and untreated clay) has also been discussed. The activities of clay for the hydroamination of different aromatic and aliphatic amines have also been investigated. Under harsh reaction conditions (increased temperature and long reaction time) small amounts of di-addition products were observed. The kinetics data has been interpreted using the initial rate approach model.  相似文献   

8.
Di‐ and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene ( 1 ), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.  相似文献   

9.
The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that “tuning” enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.  相似文献   

10.
A new concept to control catalysis and catalytic reaction through partial oxidation of alkenes with O2 is described. Oxidation of alkenes was studied by alkene/Pd-anode/H3PO4-electrolyte/cathode/O2 fuel cell (FC). An idea based on electrocatalysis and electrochemical reactions to control reaction rates and product selectivity was proposed and proven through the oxidation of propylene, Wacker and π-allyl oxidation. The oxidation rate and the product selectivity to the Wacker and the π-allyl oxidations could be controlled by changing electrode potentials. We could active control oxidation states of Pd on the anode, Pd(II) or Pd(0), during the oxidation from outer circuit. The oxidation states of Pd on the anode decided the product selectivity.  相似文献   

11.
S-layer protein of Bacillus thuringiensis strain CTC was used as the carrier protein to display polyhistidine (poly[6His]) peptides on the cell surface. Poly(6His) n was fused with S-layer protein at two different sites, inserting just downstream of the S-layer protein homologous domain (slh) and replacing the non-slh region of S-layer protein, respectively. The two series chimeric proteins were both expressed by crystal negative B. thuringiensis strain 4Q7 and strain 171, respectively, as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recombinant B. thuringiensis cells gained Ni2+- and Cd2+-binding ability and had a capacity to display up to nine copies of poly(6His). The Cd2+ adsorption quantity of the recombinant strain with the strongest adsorption ability was twice that of the host strain.  相似文献   

12.
A non-specific lipid-transfer peptide (nsLTP) with fungicidal activity was isolated from Daucus carota sativa carrot seeds. Peptides were purified by a method including aqueous extraction, anion-exchange chromatography over CM-TSK-650M, and HPLC over a column of 250/8/4 Protein@Peptide C18 using an acetonitrile gradient. The molecular weight of the peptide was determined as 9624 Da by mass spectrometry. The peptide was found to have fungicidal activity against the pathogenic fungus Verticillium dahliae. The partial N-terminal sequence, which was highly homologous to the N-terminal sequences of lipid-transfer peptides from seeds of rice, tobacco, and maize, was determined using Edman automated sequencing. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 371–373, July–August, 2007.  相似文献   

13.
Background: The branched cyclic dodecylpeptide antibiotic bacitracin, produced by special strains of Bacillus, is synthesized nonribosomally by a large multienzyme complex composed of the three bacitracin synthetases BA1, BA2 and BA3. These enzymes activate and incorporate the constituent amino acids of bacitracin by a thiotemplate mechanism in a pathway driven by a protein template. The biochemical features of these enzymes have been studied intensively but little is known about the molecular organization of their genes.Results: The entire bacitracin synthetase operon containing the genes bacA-bacC was cloned and sequenced, identifying a modular structure typical of peptide synthetases. The bacA gene product (BA1, 598 kDa) contains five modules, with an internal epimerization domain attached to the fourth; bacB encodes BA2 (297 kDa), and has two modules and a carboxy-terminal epimerization domain; bacC encodes BA3, five modules (723 kDa) with additional internal epimerization domains attached to the second and fourth. A carboxy-terminal putative thioesterase domain was also detected in BA3. A putative cyclization domain was found in BA1 that may be involved in thiazoline ring formation. The adenylation/thioester-binding domains of the first two BA1 modules were overproduced and the detected amino-acid specificity coincides with the first two amino acids in bacitracin. Disruption of chromosomal bacB resulted in a bacitracin-deficient mutant.Conclusions: The genes encoding the bacitracin synthetases BA1, BA2 and BA3 are organized in an operon, the structure of which reflects the modular architecture expected of peptide synthetases. In addition, a putative thiazoline ring formation domain was identified in the BA1 gene.  相似文献   

14.
Fungal polyketides have significant biological activities, yet the biosynthesis by highly reducing polyketide synthases (HRPKSs) remains enigmatic. An uncharacterized group of HRPKSs was found to contain a C‐terminal domain with significant homology to carnitine O ‐acyltransferase (cAT). Characterization of one such HRPKS (Tv6‐931) from Trichoderma virens showed that the cAT domain is capable of esterifying the polyketide product with polyalcohol nucleophiles. This process is readily reversible, as confirmed through the holo ACP‐dependent transesterification of the released product. The methyltransferase (MT) domain of Tv6‐931 can perform two consecutive α‐methylation steps on the last β‐keto intermediate to yield an α,α‐gem ‐dimethyl product, a new programing feature among HRPKSs. Recapturing of the released product by cAT domain is suggested to facilitate complete gem ‐dimethylation by the MT.  相似文献   

15.
Cellulases are a complex group of enzymes that are fundamental for the degradation of amorphous and crystalline cellulose in lignocellulosic material. Unfortunately, cellulases have a low catalytic efficiency on their substrates when compared to similar enzymes such as amylases, which has led to a strong interest in improving their activities. Thermobifida fusca secretes six cellulose degrading enzymes: two exo- and three endocellulases and an endo/exocellulase Cel9A (formerly called E4). Cel9A shows unique properties because of its endo- and exocellulase characteristics, strong activity on crystalline cellulose, and good synergistic properties. Therefore, it is an excellent target for mutagenesis techniques to improve crystalline cellulose degradation. In this article, we describe research conducted to improve Cel9A catalytic efficiency using a rational design and computer modeling. A computer model of Cel9A was created using the program CHARMM plus its PDB structure and a cellohexose molecule attached to the catalytic site as a starting model. Initially molecular graphics and energy minimization were used to extend the cellulose chain to 18 glucose residues spanning the catalytic domain and cellulose-binding domain (CBD). The interaction between this cellulose chain and conserved CBD residues was determined in the model, and mutations likely to improve the binding properties of the CBD were selected. Site-directed mutations were carried out using the pET vector pET26b, Escherichia coli DH5-α, and the QuickChange mutagenesis method. E. coli BL21-DE3 was used for protein production and expression. The purified proteins were assayed for enzymatic activity on filter paper, swollen cellulose, bacterial microcrystalline cellulose, and carboxymethylcellulose (CMC). Mutation of the conserved residue F476 to Y476 gave a 40% improved activity in assays with soluble and amorphous cellulose such as CMC and swollen cellulose.  相似文献   

16.
Bacillus subtilis produces various families of lipopeptides with different homologous compounds. To produce “new molecules” with improved activities and to select strains that produced a reduced number of homologs or isomers, we studied the effects of different media on the nature of the synthesis of fatty acid chains for each lipopeptide family. This study focused on two B. subtilis strains cultivated in flasks. Optimized medium for lipopeptide production and Landymedium modified by replacing glutamic acid with other α-amino acids were used. We found that the intensity of production of homologous compounds depends on the strain and the culture medium. Analysis of these lipopeptides by high-performance liquid chromatography showed that the strain B. subtilis NT02 yielded various homologous compounds when cultivated in Landy medium (L-Glu), but primarily one homologous product in high relative amounts when cultivated in the optimized medium. Mass spectrometric analysis and determination of the amino acid composition of this molecule enabled us to identify it as Bacillomycine L c15.  相似文献   

17.
Zeolite Beta was synthesized from appropriate gels and crystallized under the controlled temperature and pressurized conditions. For isomerization of n-hexane, platinum ion-exchanged zeolite Beta exhibited high activity and selectivity for 2,2-dimethylbutane (2,2-DMB), 2,3-dimethylbutane (2,3-DMB), 2-methylpentane (2-MP) and 3-methylpentane (3-MP). As high as 72% of n-hexane conversion and 98% of product selectivity were obtained at 250°C, 1600 h–1 for 20 min on stream. The influences of reaction temperature and space velocity were also studied. Pt/H-Beta zeolite was recommended as one of the promising catalyst for n-hexane isomerization due to its high activity and stability. The combined effect of the stronger acidity possessed by H-Beta and the dehydrogenation role played by Pt was believed to be responsible for the good catalytic performance of Pt/H-Beta.  相似文献   

18.
Paecilomyces marquandii, a phosphate-solubilizing, starch-utilizing filamentous fungus, was immobilized on polyurethane foam (PUF). The immobilized fungus was applied in a repeated batch (six batches) fermentation process to solubilize Hirapur rock phosphate. The fungus was immobilized on PUF cubes and was used for phosphate solubilization in shake flask repeated batch cultivations. The fungus was also immobilized on PUF sheet and utilized in an airlift bioreactor in a repeated batch process. Maximum soluble phosphate (370 μg/ml) was recorded after third batch with 8 g rock phosphate/l. After 12 days of fermentation, a total production of 1,643 μg phosphate/ml was achieved.  相似文献   

19.
Corn steep liquor (CSL), a byproduct of the corn wet-milling process, was used in an immobilized cell continuous biofilm reactor to replace the expensive P2 medium ingredients. The use of CSL resulted in the production of 6.29 g/L of total acetone-butanol-ethanol (ABE) as compared with 6.86 g/L in a control experiment. These studies were performed at a dilution rate of 0.32 h−1. The productivities in the control and CSL experiment were 2.19 and 2.01 g/(L·h), respectively. Although the use of CSL resulted in a 10% decrease in productivity, it is viewed that its application would be economical compared to P2 medium. Hence, CSL may be used to replace the P2 medium. It was also demonstrated that inclusion of butyrate into the feed was beneficial to the butanol fermentation. A control experiment produced 4.77 g/L of total ABE, and the experiment with supplemented sodium butyrate produced 5.70 g/L of total ABE. The butanol concentration increased from 3.14 to 4.04 g/L. Inclusion of acetate in the feed medium of the immobilized cell biofilm reactor was not found to be beneficial for the ABE fermentation, as reported for the batch ABE fermentation. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the names by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

20.
用金属钴配合物和过渡金属(Cu,Ni,Co等)原位生成的非晶纳米粒子作为均相、多相催化剂,研究氨硼烷的醇解放氢反应,结果发现原位生成的非晶钴纳米粒子展现出优异的产氢性能。通过10次的催化循环测试,钴纳米粒子放氢催化转换数(TON)可达6 000,最高催化产氢速率(TOF)达515 mol_(H_2)·mol_(metal)~(-1)·h~(-1)。该催化剂制备方便,且产氢稳定性好。此外,对钴纳米粒子催化氨硼烷放氢实验做动力学研究,计算其催化活化能为20.00 kJ·mol~(-1),低于大多数已经报道的其他纳米催化剂催化氨硼烷放氢反应的活化能。通过硼谱的跟踪检测,发现钴纳米催化氨硼烷的醇解反应产物是硼酸三甲酯,并对此催化反应机理进行了初步的解释和讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号