首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of electrospun poly(ethylene oxide) (PEO) fibers and silver nanoparticles (Ag NPs) were used as a soft template for coating with TiO2 by atomic layer deposition (ALD). Whereas the as‐deposited TiO2 layers on PEO fibers and Ag NPs were completely amorphous, the TiO2 layers were transformed into polycrystalline TiO2 nanotubes (NTs) with embedded Ag NPs after calcination. Their plasmonic effect can be controlled by varying the thickness of the dielectric Al2O3 spacer between Ag NPs and dye molecules by means of the ALD process. Electronic and spectroscopic analyses demonstrated enhanced photocurrent generation and solar‐cell performance due to the intense electromagnetic field of the dye resulting from the surface plasmon effect of the Ag NPs.  相似文献   

2.
Asiala SM  Schultz ZD 《The Analyst》2011,136(21):4472-4479
Vapor deposition of silver and gold onto a porous anodized aluminum oxide template is shown to produce a SERS substrate with an average surface enhancement factor of 10(7)-10(8). The high level of enhancement is explored using a combination of dark-field Rayleigh scattering and Raman spectroscopy and imaging. The scattering spectrum of the surface indicates a Plasmon resonance at 633 nm and dark-field imaging shows a relatively uniform scattering intensity at this wavelength. These measurements are consistent with the uniform enhanced Raman intensity observed in Raman maps of the substrate. Scanning electron microscopy shows the surface exhibits heterogeneous nanostructures with diameters of approximately 100 nm, the size of the pores in the template. Our measurements indicate that interactions between adjacent structures forming junctions and crevices likely give rise to a high density of hotspots, which provide the extraordinary SERS enhancement. The advantage of substrates prepared in this way is the reproducibly dense distribution of hotspots across the surface, increasing the likelihood that an analyte will experience the largest enhancement.  相似文献   

3.
An unusual aggregation phenomenon that involves positively charged poly(L-lysine) (PLL) and negatively charged gold nanoparticles (Au NPs) is reported. Discrete, submicrometer-sized spherical aggregates are found to form immediately upon combining a PLL solution with gold sol (diameter approximately 14 nm). These PLL-Au NP assemblies grow in size with time, according to light scattering experiments, which indicates a dynamic flocculation process. Water-filled, silica hollow microspheres (outer diameter approximately microns) are obtained upon the addition of negatively charged SiO2 NPs (diameter approximately 13 nm) to a suspension of the PLL-Au NP assemblies, around which the SiO2 NPs form a shell. Structural analysis through confocal microscopy indicates the PLL (tagged with a fluorescent dye) is located in the interior of the hollow sphere, and mostly within the silica shell wall. The hollow spheres are theorized to form through flocculation, in which the charge-driven aggregation of Au NPs by PLL provides the critical first step in the two-step synthesis process ("flocculation assembly"). The SiO2 shell can be removed and re-formed by decreasing and increasing the suspension pH about the point-of-zero charge of SiO2, respectively.  相似文献   

4.
The use of plasmonic nanostructures for fluorescence signal amplification is currently a very active research field. The detection of submonolayers of proteins labeled with organic dyes is a widely used technique in surface-based immunoassays and DNA hybridization. There is a strong interest in the development of new optical and chemical methods to increase the signal from ultralow concentrations of dyes on the surface of sensor substrates. Herein, we have explored the possibility of using vacuum-deposited silver nanostructures on dielectric layers and silver mirrors as potential plasmonic substrates that effectively amplify fluorescence over a broad spectral range. By optimizing deposition parameters for dielectric layers and silver nanostructures and applying thermal annealing processes, we observed large fluorescence amplifications from three different dye-strept(avidin) conjugates: about 7-fold for a UV/blue dye AF350-Av, 49-fold for a blue-green dye AF488-SA, and up to 208-fold for red-emitting AF647-SA dye. The observed amplification factors for the ensemble of fluorophores are very promising for development of surface-based bioassays. These substrates can be prepared using simple vacuum deposition in which we circumvent using the expensive nanofabrication methods. In addition, unlike most nanofabrication methods, the present approach is appropriate for large scale fabrication of substrates with microscope slide surface area suitable for sensing applications.  相似文献   

5.
Near-field scanning optical microscopy (NSOM) was applied to study the effect of a two-dimensional array of silver nanoparticles on the spatial distribution and magnitude of fluorescence signal enhancement for a monolayer of Rhodamine 6G (Rh6G). Twenty polyelectrolyte monolayers were deposited between the nanoparticles and the dye by a layer-by-layer deposition technique resulting in a 15-20 nm separation cushion, necessary to minimize the fluorescence signal quenching. The fluorescence signal in NSOM images was found to be distributed inhomogeneously as small (100-200 nm in diameter) fluorescent clusters with typically 5-30 times higher fluorescence intensities than a sample without nanoparticles. The position and relative intensity of the clusters was found to be dependent on the excitation wavelength, suggesting that the enhancement originates from the nanoparticle surface plasmon resonance.  相似文献   

6.
Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles.  相似文献   

7.
The stabilizing role of carboxymethyl groups on the conformal deposition of Ag NPs over cellulosic fibers was elucidated while developing a method for the deposition of silver nanoparticles (NPs) on cellulose acetate (CA), cellulose and partially carboxymethylated cellulose (CMC) electrospun fibers. CMC fibers were prepared through judicious anionization of deacetylated cellulose acetate fibers. Ag NPs were chemically reduced from silver nitrate using sodium borohydride and further stabilized using citrate. Ag NPs were directly deposited onto CA, cellulose and CMC electrospun fibers at pH conditions ranging from 2.5 to 9.0. The resulting composites of Ag/fiber were characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The results revealed that the amount of Ag agglomerates and NPs deposited on CMC fibers was higher than that deposited on cellulose fibers at similar pH conditions, and that barely any Ag agglomerates or NPs were deposited on the CA fibers. These results implied that functional groups on the cellulose backbone played two important roles in the deposition of NPs as follows: (1) Hydrogen bonding was the main driving force for agglomeration of NPs when the medium pH was below 4.4, which corresponds to the pKa of carboxylic acid groups; (2) Carboxymethyl groups could replace citrate groups as stabilizers allowing the fabrication of a uniform and evenly distributed Ag NPs layer over CMC fibers at higher pH values. This report also highlights the importance of the substrate’s surface charge and that of the pH of the medium used, on the deposition of NPs. The composite of Ag NPs on CMC electrospun fibers appears to be a promising candidate for wound dressing applications due to its superior antibacterial properties originated by the uniform and even distribution of Ag NPs on the surface of the fibers and the wound healing aptness of the CMC fibers.  相似文献   

8.
The aim of this work was to investigate the formation of J-aggregates of thiacyanine dye (TC, 5,5′-disulfopropyl-3,3′-dichlorothiacyanine sodium salt) in the presence of 6 nm spherical silver nanoparticles (Ag NPs) using spectrophotometric and fluorescence methods. The formation of J-aggregates was concentration dependent and characterized by the appearance of the new absorption band with the maximum at 481 nm. Spectrophotometric study of J-aggregate formation and time stability suggested that they were formed on the account of monomer form of TC. Moreover, the stability of J-aggregates increased with the lowering AgNPs concentration. The measurements of fluorescence of the NPs—dye assembly clearly indicated that the fluorescence of TC was quenched by Ag NPs on the concentration dependent manner. The spectrophotometric and fluorescence properties of NPs—dye assembly were found to be quantitatively related to the surface coverage of the dye on the Ag NPs.  相似文献   

9.
In this work, we used a model assay system (polyclonal human IgG–goat antihuman IgG) to elucidate some of the key factors that influence the analytical performance of bioassays that employ metal-enhanced fluorescence (MEF) using silver nanoparticles (NPs). Cy5 dye was used as the fluorescent label, and results were compared with a standard assay performed in the absence of NPs. Two sizes of silver NPs were prepared with respective diameters of 60 ± 10 and 149 ± 16 nm. The absorption spectra of the NPs in solution were fitted accurately using Mie theory, and the dipole resonance of the 149-nm NPs in solution was found to match well with the absorption spectrum of Cy5. Such spectral matching is a key factor in optimizing MEF. NPs were deposited uniformly and reproducibly on polyelectrolyte-coated polystyrene substrates. Compared to the standard assay performed without the aid of NPs, significant improvements in sensitivity and in limit of detection (LOD) were obtained for the assay with the 149-nm NPs. An important observation was that the relative enhancement of fluorescence increased as the concentration of antigen increased. The metal-assisted assay data were analyzed using standard statistical methods and yielded a LOD of 0.086 ng/mL for the spectrally matched NPs compared to a value of 5.67 ng/mL obtained for the same assay in the absence of NPs. This improvement of ∼66× in LOD demonstrates the potential of metal-enhanced fluorescence for improving the analytical performance of bioassays when care is taken to optimize the key determining parameters.   相似文献   

10.
Magneto‐plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near‐infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto‐plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.  相似文献   

11.
In this work, we proposed a novel three-dimensional (3D) plasmonic nanostructure based on porous graphene/nickel foam (GNF) and gas-phase deposited Ag nanoparticles (NPs).Ag NPs with high density were directly deposited on the surface of 3D GNF by performing a novel cluster beam deposition approach. In comparison with traditional Ag substrate(SiO2/Ag), such hot-spots enriched 3D nanostructure showed extremely high electromag-netic field enhancement under incident light irradiation which could be used as a sensitive chemical sensor based on surface enhanced Raman scattering (SERS). The experimental results demonstrated that the proposed nanostructure showed superior SERS performance in terms of Raman signal reproducibility and sensitivity for the probe molecules. 3D full-wave simulation showed that the enhanced SERS performance in this 3D hierarchical plasmonic nanostructure was mainly obtained from the hot-spots between Ag NPs and the near-field coupling between Ag NPs and GNF sca olds. This work can provide a novel assembled SERS substrate as a SERS-based chemical sensor in practical applications.  相似文献   

12.
在表面增强拉曼光谱(SERS)的研究领域中,基于局域表面等离子体共振效应的等离子体SERS基底的制备成为过去几十年的研究热点。然而,通常开发的等离子体金属基底具有较差的稳定性和重现性。对于SERS而言,石墨烯类材料具有拉曼化学增强效应,除此之外,还具有分子富集、强的稳定性与荧光猝灭能力等优点,因此基于石墨金属复合纳米材料的SERS基底受到了研究人员的重视。我们利用化学气相沉积(CVD)法制备了小尺寸的金石墨核壳纳米颗粒(Au@G),其粒径约为17 nm。我们通过在Au NP上包覆介孔二氧化硅来控制Au@G的尺寸,同时还研究了包覆二氧化硅过程中,正硅酸乙酯(TEOS)的浓度对于石墨壳层形成的影响。结果表明当TEOS在一定浓度范围内,其浓度的降低有利于得到石墨化程度高的Au@G。进一步利用Au@G对结晶紫分子进行拉曼检测,也表明了Au@G具有较好的拉曼增强效果。这种小尺寸的Au@G在分子检测与细胞成像分析领域中具有广泛的应用潜力。  相似文献   

13.
Spherical cap gold nanocavity arrays with internal diameters of 240, 430, 600 and 820 nm were fabricated on smooth gold films using nanosphere lithography with electrochemical metal deposition. Each array was prepared to the same normalized film thickness to diameter ratios, t(N), of 0.8 ± 0.04. Selective modification of the top surface and interior walls of the gold nanocavity arrays with [Ru(bpy)(2)(Qbpy)](2+), where bpy is 2,2'-bipyridyl and Qbpy is 2,2':4,4':4,4'-quarterpyridyl, was accomplished using a two step adsorption process exploiting the assembled polystyrene spheres as masks. This selective modification approach permitted direct quantitative comparison, for the first time, of plasmonic enhancement of Raman signal and luminescence signal from a monolayer adsorbed at the top surface versus interior walls of all-gold nanocavity arrays. For all cavity sizes, significantly greater Raman and luminescence signal enhancement was observed from [Ru(bpy)(2)(Qbpy)](2+) monolayer adsorbed at the top surface of the array compared with the cavity walls. This disparity in Raman intensity from top versus cavity interior increased as the cavity dimensions decreased. For example, the Raman signal intensity from [Ru(bpy)(2)(Qbpy)](2+) adsorbed at the top surface of 240 nm gold arrays was 170 times greater than SERS signal for this material adsorbed at the interior walls of this array, whereas the relative Raman signal enhancement was 6 from top versus interior for the 820 nm internal radius arrays under 785 nm excitation. The origin of the relatively greater signal at the top surface is discussed in the context of plasmonic distribution at each surface.  相似文献   

14.
The paper reports on the deposition of thin antimony (Sb)-doped SnO2 films onto gold and silver substrates using magnetron sputtering. The influence of the SnO2:Sb film on the electrochemical and surface plasmon resonance properties is investigated. The best results in terms of stability, electrochemical and plasmonic characteristics are obtained for SnO2:Sb of 8.5 nm thickness deposited on silver substrates.  相似文献   

15.
Gold nanoparticle (Au‐NPs)‐Titanium oxide nanotube (TiO2‐NTs) electrodes are prepared by using galvanic deposition of gold nanoparticles on TiO2‐NTs electrodes as support. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy results indicate that nanotubular TiO2 layers consist of individual tubes of about 60–90 nm diameters and gold nanoparticles are well‐dispersed on the surface of TiO2‐NTs support. The electrooxidation of hydroquinone of Au‐NPs/TiO2‐NTs electrodes is investigated by different electrochemical methods. Au‐NPs/TiO2‐NTs electrode can be used repeatedly and exhibits stable electrocatalytic activity for the hydroquinone oxidation. Also, determination of hydroquinone in skin cream using this electrode was evaluated. Results were found to be satisfactory and no matrix effects are observed during the determination of hydroquinone content of the “skin cream” samples.  相似文献   

16.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

17.
Plasmonic nanoparticles (e.g., gold, silver) have attracted much attention for biological sensing and imaging as promising nanoprobes. Practical biomedical applications demand small gold nanoparticles (Au NPs) with a comparable size to quantum dots and fluorescent proteins. Very small nanoparticles with a size below the Rayleigh limit (usually <30–40 nm) are hard to see by light scattering using a dark-field microscope, especially within a cellular medium. A photothermal microscope is able to detect very small nanoparticles, down to a few nanometers, but the imaging speed is usually too slow (minutes to hours) to image living cell processes. Here an absorption modulated scattering microscopy (AMSM) method is presented, which allows for the imaging of sub-10 nm Au NPs within a cellular medium. The unique physical mechanism of AMSM offers the remarkable ability to remove the light scattering background of the cellular component. In addition to having a sensitivity comparable to that of photothermal microscopy, AMSM has a much higher imaging speed, close to the video rate (20 fps), which allows for the dynamic tracking of small nanoparticles in living cells. This AMSM method might be a valuable tool for living cell imaging, using sub-10 nm Au NPs as biological probes, and thereby unlocking many new applications, such as single molecule labeling and the dynamic tracking of molecular interactions.

An absorption modulated scattering microscopy technique that allows for the imaging of sub-10 nm gold nanoparticles within a cellular scattering medium is presented.  相似文献   

18.
Polyelectrolyte (PEL)-based dual systems and nanoparticles (NPs) are two topics which have generated great interest as a result of their many and novel applications. Here, PEL–NPs system which appears transitorily when a high molecular weight PEL solution is mixed with metal NP colloidal dispersions during diafiltration is studied. The aim of this paper was to analyze the concentration–polarization effect of PEL molecules on size distribution of NPs capable to pass through the ultrafiltration membrane. Poly(sodium styrene sulfonate) (PSSNa) and silver nanoparticles (AgNPs) were used as PEL and metal NP colloidal dispersion, respectively. It was seen that particle size decreased from 42.4?±?37.8 to 10.1?±?0.7 nm in the presence of PSSNa and concentration–polarization. In addition, our results indicate that polarization–concentration phenomenon can be used to modify the size distribution of NP colloidal dispersions, that by changes of polarization–concentration features is possible the modification of NP size in the permeate during diafiltration experiments and that in presence of concentration–polarization, PSSNa was only a modifier factor of medium. In addition, it was observed that exclusion size of ultrafiltration membrane is an important element for establishing of particle size in the permeate.  相似文献   

19.
In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.  相似文献   

20.
Photo-thermal catalysis has recently emerged as a viable strategy to produce solar fuels or chemicals using sunlight. In particular, nanostructures featuring localized surface plasmon resonance (LSPR) hold great promise as photo-thermal catalysts given their ability to convert light into heat. In this regard, traditional plasmonic materials include gold (Au) or silver (Ag), but in the last years, transition metal nitrides have been proposed as a cost-efficient alternative. Herein, we demonstrate that titanium nitride (TiN) tubes derived from the nitridation of TiO2 precursor display excellent light absorption properties thanks to their intense LSPR band in the visible–IR regions. Upon deposition of Ru nanoparticles (NPs), Ru-TiN tubes exhibit high activity towards the photo-thermal CO2 reduction reaction, achieving remarkable methane (CH4) production rates up to 1200 mmol g−1 h−1. Mechanistic studies suggest that the reaction pathway is dominated by thermal effects thanks to the effective light-to-heat conversion of Ru-TiN tubes. This work will serve as a basis for future research on new plasmonic structures for photo-thermal applications in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号