首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The band spectrum of SbO was excited in a heavy current discharge from a 2000 volt D. C. generator. A new doublet system of bands occurring in the region λ 2800 toλ 3600 arising from a transition of the type2Δr?2 Π r was identified. The lower2 Π r state is found to be common to those of the three band systems reported earlier, which is in all probability the ground state of the SbO molecule. The band heads of the high frequency and low frequency components could be represented by the following quantum formulae:
$$\begin{gathered} ^2 \Delta _{\tfrac{3}{2}} - ^2 \Pi _{\tfrac{1}{2}} : \hfill \\ v = 29754 \cdot 6 + 570 \cdot 6 (v' + \tfrac{1}{2}) - 3 \cdot 52 (v' + \tfrac{1}{2})^2 - 820 \cdot 5 (v'' + \tfrac{1}{2}) + 4 \cdot 62 (v'' + \tfrac{1}{2})^2 \hfill \\ ^2 \Delta _{\tfrac{5}{2}} - ^2 \Pi _{\tfrac{3}{2}} : \hfill \\ v = 28044 \cdot 8 + 568 \cdot 1 (v' + \tfrac{1}{2}) - 3 \cdot 28 (v' + \tfrac{1}{2})^2 - 819 \cdot 2 (v'' + \tfrac{1}{2}) + 4 \cdot 62 (v'' + \tfrac{1}{2})^2 . \hfill \\ \end{gathered} $$  相似文献   

2.
A few red degraded bands attributable to NS have been reported earlier byFowler andBarker, Dressler andBarrow et al, and they occur in the same region (2300 to 2700 Å) as the bands of the known systems (C 2 +?X 2 П) and (A 2 Δ?X 2 П). Measurements made on the heads of some of these weak bands ledBarrow et al. to believe that these bands may form a system analogous to theβ-system of NO and be due to a2 П-2 П transition. The spectrum of NS has now been studied in a little more detail by means of an uncondensed discharge through dry nitrogen and sulphur vapour in the presence of argon and thirty three bands belonging to this system have been recorded in the region 2280 to 2760 Å. It has been found possible to represent the band heads by means of the equation
$$^v {\text{head}} {\text{ = }} \left. {_{43182 \cdot 5}^{{\text{43311}} \cdot {\text{5}}} } \right\}_{ - [1219 \cdot 20(v'' + \tfrac{1}{2}) - 7 \cdot 48(v'' + \tfrac{1}{2})^2 ].}^{ + [761 \cdot 04(v' + \tfrac{1}{2}) - 5 \cdot 10(v' + \tfrac{1}{2})^2 ]}$$  相似文献   

3.
New measurements of the wavelengths of the band heads of MnO spectrum have been made. In all 57 band heads, including 15 hitherto unrecorded ones, have been measured. The equation representing the wave-number of a band head has been modified as,
$$\begin{gathered} v = 17949 \cdot 19 + \{ 762 \cdot 75(v' + \tfrac{1}{2}) - 9 \cdot 60(v' + \tfrac{1}{2})^2 + 0 \cdot 06(v' + \tfrac{1}{2})^3 \} \hfill \\ - \{ 839 \cdot 55(v'' + \tfrac{1}{2}) - 4 \cdot 79(v'' + \tfrac{1}{2})^2 \} \hfill \\ \end{gathered} $$  相似文献   

4.
An electric Molecular-Beam-Resonance-Spectrometer has been used to measure simultanously the Zeeman- and Stark-effect splitting of the hyperfine structure of39K19 F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J =±1)-transitions were induced electrically. Completely resolved spectra of KF in theJ=1 rotational state have been measured. The obtained quantities are: The electric dipolmomentμ e l of the molecul forv=0,1 and 2; the rotational magnetic dipolmomentμ J forv=0,1; the difference of the magnetic shielding (σ ? σ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ ? ξ). The numerical values are
$$\begin{array}{*{20}c} {\mu _{e1} = 8,585(4)deb,} \\ {\frac{{(\mu _{e1} )_{\upsilon = 1} }}{{(\mu _{e1} )_{\upsilon = 0} }} = 1,0080,} \\ {{{\mu _J } \mathord{\left/ {\vphantom {{\mu _J } J}} \right. \kern-\nulldelimiterspace} J} = ( - )2352(10) \cdot 10^{ - 6} \mu _B ,} \\ {(\sigma _ \bot - \sigma _\parallel )F = ( - )2,19(9) \cdot 10^{ - 4} ,} \\ {(\sigma _ \bot - \sigma _\parallel )K = ( - )12(9) \cdot 10^{ - 4} ,} \\ {(\xi _ \bot - \xi _\parallel ) = 3 (1) \cdot 10^{ - 30} {{erg} \mathord{\left/ {\vphantom {{erg} {Gau\beta ^2 }}} \right. \kern-\nulldelimiterspace} {Gau\beta ^2 }}} \\ \end{array} $$  相似文献   

5.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of133Cs19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. Electrically induced (Δ m J =±1)-transitions have been measured in theJ=1 rotational state, υ=0, 1 vibrational state. The obtained quantities are: The electric dipolmomentμ el of the molecule for υ=0, 1; the rotational magnetic dipolmomentμ J for υ=0, 1; the anisotropy of the magnetic shielding (σ -σ‖) by the electrons of both nuclei as well as the anisotropy of the molecular susceptibility (ξ -ξ‖), the spin rotational interaction constantsc Cs andc F, the scalar and the tensor part of the nuclear dipol-dipol interaction, the quadrupol interactioneqQ for υ=0, 1. The numerical values are:
$$\begin{gathered} \mu _{el} \left( {\upsilon = 0} \right) = 73878\left( 3 \right)deb \hfill \\ \mu _{el} \left( {\upsilon = 1} \right) - \mu _{el} \left( {\upsilon = 0} \right) = 0.07229\left( {12} \right)deb \hfill \\ \mu _J /J\left( {\upsilon = 0} \right) = - 34.966\left( {13} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \mu _J /J\left( {\upsilon = 1} \right) = - 34.823\left( {26} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_{Cs} = - 1.71\left( {21} \right) \cdot 10^{ - 4} \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_F = - 5.016\left( {15} \right) \cdot 10^{ - 4} \hfill \\ \left( {\xi _ \bot - \xi _\parallel } \right) = 14.7\left( {60} \right) \cdot 10^{ - 30} erg/Gau\beta ^2 \hfill \\ c_{cs} /h = 0.638\left( {20} \right)kHz \hfill \\ c_F /h = 14.94\left( 6 \right)kHz \hfill \\ d_T /h = 0.94\left( 4 \right)kHz \hfill \\ \left| {d_s /h} \right|< 5kHz \hfill \\ eqQ/h\left( {\upsilon = 0} \right) = 1238.3\left( 6 \right) kHz \hfill \\ eqQ/h\left( {\upsilon = 1} \right) = 1224\left( 5 \right) kHz \hfill \\ \end{gathered} $$  相似文献   

6.
We prove that the spectrum of the discrete Schrödinger operator on ?2(?2)
$$\begin{array}{@{}rcl@{}} (\psi _{n,m})\mapsto -(\psi _{n + 1,m} +\psi _{n-1,m} + \psi _{n,m + 1} +\psi _{n,m-1})+V_{n}\psi _{n,m} \ , \\ \quad (n, m) \in \mathbb {Z}^{2},\ \left \{ V_{n}\right \}\in \ell ^{\infty }(\mathbb {Z}) \end{array} $$
(1)
is absolutely continuous.
  相似文献   

7.
The Neumann Schrödinger operator \(\mathcal{L}\) is considered on a thin 2D star-shaped junction, composed of a vertex domain Ωint and a few semi-infinite straight leads ω m , m = 1, 2, ..., M, of width δ, δ ? diam Ωint, attached to Ωint at Γ ? ?Ωint. The potential of the Schrödinger operator l ω on the leads vanishes, hence there are only a finite number of eigenvalues of the Neumann Schrödinger operator L int on Ωint embedded into the open spectral branches of l ω with oscillating solutions χ ±(x, p) = \(e^{ \pm iK_ + x} e_m \) of l ω χ ± = p 2 χ ±. The exponent of the open channels in the wires is
$K_ + (\lambda ) = p\sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = \sqrt \lambda P_ + $
, with constant e m , on a relatively small essential spectral interval Δ ? [0, π 2 δ ?2). The scattering matrix of the junction is represented on Δ in terms of the ND mapping
$\mathcal{N} = \frac{{\partial P_ + \Psi }}{{\partial x}}(0,\lambda )\left| {_\Gamma \to P_ + \Psi _ + (0,\lambda )} \right|_\Gamma $
as
$S(\lambda ) = (ip\mathcal{N} + I_ + )^{ - 1} (ip\mathcal{N} - I_ + ), I_ + = \sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = P_ + $
. We derive an approximate formula for \(\mathcal{N}\) in terms of the Neumann-to-Dirichlet mapping \(\mathcal{N}_{\operatorname{int} } \) of L int and the exponent K ? of the closed channels of l ω . If there is only one simple eigenvalue λ 0 ∈ Δ, L intφ0 = λ 0φ0 then, for a thin junction, \(\mathcal{N} \approx |\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} \) with
$\vec \phi _0 = P_ + \phi _0 = (\delta ^{ - 1} \int_{\Gamma _1 } {\phi _0 (\gamma )} d\gamma ,\delta ^{ - 1} \int_{\Gamma _2 } {\phi _0 (\gamma )} d\gamma , \ldots \delta ^{ - 1} \int_{\Gamma _M } {\phi _0 (\gamma )} d\gamma )$
and \(P_0 = \vec \phi _0 \rangle |\vec \phi _0 |^{ - 2} \langle \vec \phi _0 \),
$S(\lambda ) \approx \frac{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} - I_ + }}{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} + I_ + }} = :S_{appr} (\lambda )$
. The related boundary condition for the components P +Ψ(0) and P +Ψ′(0) of the scattering Ansatz in the open channel \(P_ + \Psi (0) = (\bar \Psi _1 ,\bar \Psi _2 , \ldots ,\bar \Psi _M ), P_ + \Psi '(0) = (\bar \Psi '_1 , \bar \Psi '_2 , \ldots , \bar \Psi '_M )\) includes the weighted continuity (1) of the scattering Ansatz Ψ at the vertex and the weighted balance of the currents (2), where
$\frac{{\bar \Psi _m }}{{\bar \phi _0^m }} = \frac{{\delta \sum\nolimits_{t = 1}^M { \bar \Psi _t \bar \phi _0^t } }}{{|\vec \phi _0 |^2 }} = \frac{{\bar \Psi _r }}{{\bar \phi _0^r }} = :\bar \Psi (0)/\bar \phi (0), 1 \leqslant m,r \leqslant M$
(1)
,
$\sum\limits_{m = 1}^M {\bar \Psi '_m } \bar \phi _0^m + \delta ^{ - 1} (\lambda - \lambda _0 )\bar \Psi /\bar \phi (0) = 0$
(1)
. Conditions (1) and (2) constitute the generalized Kirchhoff boundary condition at the vertex for the Schrödinger operator on a thin junction and remain valid for the corresponding 1D model. We compare this with the previous result by Kuchment and Zeng obtained by the variational technique for the Neumann Laplacian on a shrinking quantum network.
  相似文献   

8.
The halflife of the first excited state in Yb170 has been measured by delayed beta-electron coincidence technique. The value of\(T_{\tfrac{1}{2}} = (1 \cdot 61 \pm 0 \cdot 06)10^{ - 9} \) sec was obtained. The transition probability was calculated and compared with the estimated value from the single particle model. An enhancement factor of 169 was found. The intrinsic quadrupole momentQ 0 and the deformation parameterβ were determined.  相似文献   

9.
Consider the focussing cubic nonlinear Schrödinger equation in \({\mathbb{R}}^3\) :
$i\psi_t+\Delta\psi = -|\psi|^2 \psi. \quad (0.1) $
It admits special solutions of the form e itα ?, where \(\phi \in {\mathcal{S}}({\mathbb{R}}^3)\) is a positive (? > 0) solution of
$-\Delta \phi + \alpha\phi = \phi^3. \quad (0.2)$
The space of all such solutions, together with those obtained from them by rescaling and applying phase and Galilean coordinate changes, called standing waves, is the 8-dimensional manifold that consists of functions of the form \(e^{i(v \cdot + \Gamma)} \phi(\cdot - y, \alpha)\) . We prove that any solution starting sufficiently close to a standing wave in the \(\Sigma = W^{1, 2}({\mathbb{R}}^3) \cap |x|^{-1}L^2({\mathbb{R}}^3)\) norm and situated on a certain codimension-one local Lipschitz manifold exists globally in time and converges to a point on the manifold of standing waves. Furthermore, we show that \({\mathcal{N}}\) is invariant under the Hamiltonian flow, locally in time, and is a centre-stable manifold in the sense of Bates, Jones [BatJon]. The proof is based on the modulation method introduced by Soffer and Weinstein for the L 2-subcritical case and adapted by Schlag to the L 2-supercritical case. An important part of the proof is the Keel-Tao endpoint Strichartz estimate in \({\mathbb{R}}^3\) for the nonselfadjoint Schrödinger operator obtained by linearizing (0.1) around a standing wave solution. All results in this paper depend on the standard spectral assumption that the Hamiltonian
$\mathcal H = \left ( \begin{array}{cc}\Delta + 2\phi(\cdot, \alpha)^2 - \alpha &;\quad \phi(\cdot, \alpha)^2 \\ -\phi(\cdot, \alpha)^2 &;\quad -\Delta - 2 \phi(\cdot, \alpha)^2 + \alpha \end{array}\right ) \quad (0.3)$
has no embedded eigenvalues in the interior of its essential spectrum \((-\infty, -\alpha) \cup (\alpha, \infty)\) .
  相似文献   

10.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of23Na19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J=±1)-transitions were induced electrically. Completely resolved spectra of NaF in theJ=1 rotational state have been measured in several vibrational states. The obtained quantities are: The electric dipolmomentμ el of the molecule forv=0, 1 and 2, the rotational magnetic dipolmomentμ J forv=0, 1, the difference of the magnetic shielding (σ -σ ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ -ξ ), the spin rotational constantsc F andc Na, the scalar and the tensor part of the molecular spin-spin interaction, the quadrupol interactione q Q forv=0, 1 and 2. The numerical values are
$$\begin{gathered} \mu _{\mathfrak{e}1} = 8,152(6) deb \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 1)}}{{\mu _{\mathfrak{e}1} (v = 0)}} = 1,007985 (7) \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 2)}}{{\mu _{\mathfrak{e}1} (v = 1)}} = 1,00798 (5) \hfill \\ \mu _J = - 2,89(3)10^{ - 6} \mu _B \hfill \\ \frac{{\mu _J (v = 0)}}{{\mu _J (v = 1)}} = 1,020 (13) \hfill \\ (\sigma _ \bot - \sigma _\parallel )_{Na} = - 51(12) \cdot 10^{ - 5} \hfill \\ (\sigma _ \bot - \sigma _\parallel )_F = - 51(12) \cdot 10^{ - 6} \hfill \\ (\xi _ \bot - \xi _\parallel ) = - 1,59(120)10^{ - 30} erg/Gau\beta ^2 \hfill \\ {}^CNa/^h = 1,7 (2)kHz \hfill \\ {}^CF/^h = 2,2 (2)kHz \hfill \\ {}^dT/^h = 3,7 (2)kHz \hfill \\ {}^dS/^h = 0,2 (2)kHz \hfill \\ eq Q/h = - 8,4393 (19)MHz \hfill \\ \frac{{eq Q(v = 0)}}{{eq Q(v = 1)}} = 1,0134 (2) \hfill \\ \frac{{eq Q(v = 1)}}{{eq Q(v = 2)}} = 1,0135 (2) \hfill \\ \end{gathered} $$  相似文献   

11.
Results of the search for rare radiative decay modes of the ?-meson performed with the Neutral Detector at the VEPP-2M collider are presented. For the first time upper limits for the branching ratios of the following decay modes have been placed at 90% confidence level: $$\begin{gathered} B(\phi \to \eta '\gamma )< 4 \cdot 10^{ - 4} , \hfill \\ B(\phi \to \pi ^0 \pi ^0 \gamma )< 10^{ - 3} , \hfill \\ B(\phi \to f_0 (975)\gamma )< 2 \cdot 10^{ - 3} , \hfill \\ B(\phi \to H\gamma )< 3 \cdot 10^{ - 4} , \hfill \\ \end{gathered} $$ whereH is a scalar (Higgs) boson with a mass 600 MeV<m H <1000 MeV, the real measurement isB(φH γB(H→2π0)<0.8·10-4, the quoted result is model dependent, as explained in the text, $$\begin{gathered} B(\phi \to a\gamma ) \cdot B(a \to e^ + e^ - )< 5 \cdot 10^{ - 5} , \hfill \\ B(\phi \to a\gamma ) \cdot B(a \to \gamma \gamma )< 2 \cdot 10^{ - 3} , \hfill \\ \end{gathered} $$ wherea is a particle with a low mass and a short lifetime, $$B(\phi \to a\gamma )< 0.7 \cdot 10^{ - 5} ,$$ wherea is a particle with a low mass not observed in the detector.  相似文献   

12.
In the classical collision theory the scattering angle? depends on the impact parameterb and on the kinetic energyE r of the relative motion. This angle?(b, E r ) is expanded for two limiting cases: 1. Expansion in powers of the potentialV(r)/E r (momentum approximation). 2. Expansion in powers of the impact parameterb (central collision approximation). The radius of convergence of the series depends onb andE r . It will be given for the following potentialsV(r):
$$A\left( {\frac{a}{r}} \right)^\mu ;Ae^{ - \frac{r}{a}} ;A\frac{a}{r}e^{ - \frac{r}{a}} ;A\left( {\frac{a}{r}} \right)^2 e^{ - \left( {\frac{r}{a}} \right)^2 } .$$  相似文献   

13.
We consider the quantum mechanics on the noncommutative plane with the generalized uncertainty relations \({\Delta } x_{1} {\Delta } x_{2} \ge \frac {\theta }{2}, {\Delta } p_{1} {\Delta } p_{2} \ge \frac {\bar {\theta }}{2}, {\Delta } x_{i} {\Delta } p_{i} \ge \frac {\hbar }{2}, {\Delta } x_{1} {\Delta } p_{2} \ge \frac {\eta }{2}\). We show that the model has two essentially different phases which is determined by \(\kappa = 1 + \frac {1}{\hbar ^{2} } (\eta ^{2} - \theta \bar {\theta })\). We construct a operator \(\hat {\pi }_{i}\) commuting with \(\hat {x}_{j} \) and discuss the harmonic oscillator model in two dimensional non-commutative space for three case κ > 0, κ = 0, κ < 0. Finally, we discuss the thermodynamics of a particle whose hamiltonian is related to the harmonic oscillator model in two dimensional non-commutative space.  相似文献   

14.
The losses through bremsstrahlung in a sufficiently diluted hydrogen plasma (plasma with infinitely large Debye-Hückel radius) are calculated for the relativistic (kT?mc 2) and ultra-relativistic (kT?mc 2) region of electron temperatures. (m is the rest mass of the electron). In the ultra-relativistic temperature region the amount of energyI tot emitted by 1 cm3 of plasma per sec as a result of electron-ion and electron-electron collisions is given by
$$I^{tot} = 3 \cdot 39 \times 10^{ - 29} \frac{{n^2 }}{\mu }[1 \cdot 86 + E_1 (\mu )]Wattcm^{ - 3} $$  相似文献   

15.
The rapidity distributions of inclusive \(e^ + e^ - \to h\bar h + \cdot \cdot \cdot\) of PEP and DESY experiments are analyzed in terms of the covariant partition temperatureT p model. The estimates ofT p * in the fireball system are comparable to the conventional temperature, the energy dependence follows approximately Stefan's law, the radius of the specific volume ralative to the energy density being ~1.18 fm. In the c.m.s. of collision, \(T_p = AW^a (W = \sqrt s in GeV)\) witha=0.60±0.05 andA=0.256±0.006, it is found \(T_p \cong {W \mathord{\left/ {\vphantom {W {\tfrac{3}{2}\left\langle {n_ \pm } \right\rangle }}} \right. \kern-0em} {\tfrac{3}{2}\left\langle {n_ \pm } \right\rangle }}\) . These properties hold also for \(\bar pp\) collision, but not forpp→π?+...  相似文献   

16.
I. I. Guseinov 《Few-Body Systems》2013,54(11):1773-1780
By the use of complete orthonormal sets of ${\psi ^{(\alpha^{\ast})}}$ -exponential type orbitals ( ${\psi ^{(\alpha^{\ast})}}$ -ETOs) with integer (for α * = α) and noninteger self-frictional quantum number α *(for α * ≠ α) in standard convention introduced by the author, the one-range addition theorems for ${\chi }$ -noninteger n Slater type orbitals ${(\chi}$ -NISTOs) are established. These orbitals are defined as follows $$\begin{array}{ll}\psi _{nlm}^{(\alpha^*)} (\zeta ,\vec {r}) = \frac{(2\zeta )^{3/2}}{\Gamma (p_l ^* + 1)} \left[{\frac{\Gamma (q_l ^* + )}{(2n)^{\alpha ^*}(n - l - 1)!}} \right]^{1/2}e^{-\frac{x}{2}}x^{l}_1 F_1 ({-[ {n - l - 1}]; p_l ^* + 1; x})S_{lm} (\theta ,\varphi )\\ \chi _{n^*lm} (\zeta ,\vec {r}) = (2\zeta )^{3/2}\left[ {\Gamma(2n^* + 1)}\right]^{{-1}/2}x^{n^*-1}e^{-\frac{x}{2}}S_{lm}(\theta ,\varphi ),\end{array}$$ where ${x=2\zeta r, 0<\zeta <\infty , p_l ^{\ast}=2l+2-\alpha ^{\ast}, q_l ^{\ast}=n+l+1-\alpha ^{\ast}, -\infty <\alpha ^{\ast} <3 , -\infty <\alpha \leq 2,_1 F_1 }$ is the confluent hypergeometric function and ${S_{lm} (\theta ,\varphi )}$ are the complex or real spherical harmonics. The origin of the ${\psi ^{(\alpha ^{\ast})} }$ -ETOs, therefore, of the one-range addition theorems obtained in this work for ${\chi}$ -NISTOs is the self-frictional potential of the field produced by the particle itself. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids when Hartree–Fock–Roothan approximation is employed.  相似文献   

17.
Radio frequency spectra of CsF in the rotational stateJ=1 have been measured for the vibrational statesv=0, 1,..., 8 using the molecular beam electric resonance method. The analysis of the spectra yields the electric dipole moment μv and the quadrupole coupling constanteq v Q connected with the quadrupole moment of the Cs nucleus. The results are: $$\begin{gathered} \mu _\upsilon = 7.8478 + 0.07026(\upsilon + 1/2) + 0.000195(\upsilon + 1/2)^2 debye \hfill \\ eq_\upsilon Q/h = 1245.2 - 16.2(\upsilon + 1/2) + 0.31(\upsilon + 1/2)^2 kHz. \hfill \\ \end{gathered} $$   相似文献   

18.
The cross section of the quasi-elastic reactions \(\bar v_\mu p \to \mu ^ + \Lambda (\Sigma ^0 )\) in the energy range 5–100 GeV is determined from Fermilab 15′ bubble chamber antineutrino data. TheQ 2 analysis of quasi-elastic Λ events yieldsM A=1.0±0.3 GeV/c2 for the axial mass value. With zero µΛ K 0 events observed, the 90% confidence level upper limit \(\sigma (\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 )< 2.0 \cdot 10^{ - 40} cm^2 \) is obtained. At the same time, we found that the cross section of reaction \(\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 + m\pi ^0 \) is equal to \(\left( {3.9\begin{array}{*{20}c} { + 1.6} \\ { - 1.3} \\ \end{array} } \right) \cdot 10^{ - 40} cm^2 \) .  相似文献   

19.
The decay of an excited state by the emission of twoγ-quanta (γ γ-transitions) or two conversion electrons (e e-transitions) or oneγ-quantum and one conversion electron (γ e-transitions) is expected as a second order radiation process. The decay of Ag109m was examined for such events using a special arrangement of two NaJ-scintillation counters in coincidence. The energies of coincident quanta were displayed on the two axes of an “X-Y”-Oscilloscope respectively. For the ratio ofγ γ-transitions to one-quantum transitions an upper limit of\(\frac{{W_{\gamma \gamma } }}{{W_\gamma }} \leqq 1,9 \cdot 10^{ - 5} \) was obtained. Furthermore theγ-spectrum in coincidence withK X-rays was studied. From these measurementse e- andγ e-transition rates can be calculated for the case ofK shell conversion. The results obtained are:
$$\frac{{W_{^e K^e K} }}{{W_\gamma }} = \left( {8,1_{ - 1,7}^{ + 0,6} } \right) \cdot 10^{ - 3} and\frac{{W_{\gamma ^e K} }}{{W_\gamma }}< 1,5 \cdot 10^{ - 3} .$$  相似文献   

20.
Theβ-α angular correlation of Li8 has been measured at electron energies of 3·5 and 7·0 Mev. Theβ-energies were selected by a magnetic lens spectrometer. Subtracting the contribution by kinematic effects we find for the coefficientb of the cos2Θ term\(b = \left( {1 \cdot 9\begin{array}{*{20}c} { + 2 \cdot 6} \\ { - 2 \cdot 3} \\ \end{array} } \right)\%\) at 3·5 Mev and\(b = \left( {4 \cdot 0\begin{array}{*{20}c} { + 2 \cdot 0} \\ { - 1 \cdot 3} \\ \end{array} } \right)\%\) at 7·0 Mev. This result is in reasonable agreement with theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号