首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Disaggregation methods have been extensively used in multiple criteria decision making to infer preferential information from reference examples, using linear programming techniques. This paper proposes simple extensions of existing formulations, based on the concept of regularization which has been introduced within the context of the statistical learning theory. The properties of the resulting new formulations are analyzed for both ranking and classification problems and experimental results are presented demonstrating the improved performance of the proposed formulations over the ones traditionally used in preference disaggregation analysis.  相似文献   

2.
The intensification of livestock operations in the last few decades has resulted in an increased social concern over the environmental impacts of livestock operations and thus making appropriate manure management decisions increasingly important. A socially acceptable manure management system that simultaneously achieves the pressing environmental objectives while balancing the socio-economic welfare of farmers and society at large is needed. Manure management decisions involve a number of decision makers with different and conflicting views of what is acceptable in the context of sustainable development. This paper developed a decision-making tool based on a multiple criteria decision making (MCDM) approach to address the manure management problems in the Netherlands. This paper has demonstrated the application of compromise programming and goal programming to evaluate key trade-offs between socio-economic benefits and environmental sustainability of manure management systems while taking decision makers’ conflicting views of the different criteria into account. The proposed methodology is a useful tool in assisting decision makers and policy makers in designing policies that enhance the introduction of economically, socially and environmentally sustainable manure management systems.  相似文献   

3.
Multiple criteria group decision making (MCGDM) problems have become a very active research field over the last decade. Many practical problems are often characterized by MCGDM. The aim of this paper is to develop a new approach for MCGDM problems with incomplete weight information in linguistic setting based on the projection method. Firstly, to reflect the reality accurately, a method to determine the weights of decision makers in linguistic setting is proposed by calculating the degree of similarity between 2-tuple linguistic decision matrix given by each decision maker and the average 2-tuple linguistic decision matrix. By using the weights of decision makers, all individual 2-tuple linguistic decision matrices are aggregated into a collective one. Then, to determine the weight vector of criteria, we establish a non-linear optimization model based on the basic ideal of the projection method, i.e., the optimal alternative should have the largest projection on the 2-tuple linguistic positive ideal solution (TLPIS). Calculate the 2-tuple linguistic projection of each alternative on the TLPIS and rank all the alternatives according to the 2-tuple linguistic projection value. Finally, an illustrative example is given to demonstrate the calculation process of the proposed method, and the validity is verified by comparing the evaluation results of the proposed method with that of the technique for order preference by similarity to ideal solution (TOPSIS) method.  相似文献   

4.
In this paper we focus on an extension of the Analytic Hierarchy Process (AHP) that accommodates ambiguity on the part of the decision maker (DM), and facilitates the exploration of the decision domain. We propose a systematic action learning process that builds confidence as it converges from numeric interval estimates to numeric point estimates. Our Multiple Criteria Decision Making (MCDM) problem procedure structures the problem as a hierarchy, evaluates all objects using pairwise comparisons that accommodate vagueness and ambiguity, uses interval prioritization techniques, and does synthesis using the linear additive value function. This action learning process facilitates the understanding of key stakeholders, which is imperative for the successful implementation of the subsequent decision.  相似文献   

5.
This is a summary of the author’s Ph.D. thesis, defended on 8 October 2007 at the University of Luxembourg and the Faculté Polytechnique de Mons, under the joint supervision of Raymond Bisdorff and Marc Pirlot. The thesis is written in English and is available from the author upon request. The work is situated in the field of multiple criteria decision analysis. It mostly deals with what we call progressive methods, i.e., iterative procedures presenting partial conclusions to the decision maker that can be refined at further steps of the analysis. Such progressive methods have been studied in the context of multiattribute value theory and outranking methods.   相似文献   

6.
《Applied Mathematical Modelling》2014,38(21-22):5256-5268
A new method is proposed to solve multiple criteria group decision making (MCGDM) problems, in which both the criteria values and criteria weights take the form of linguistic information, and the information about linguistic criteria weights is partly known or completely unknown. Firstly, to get reasonable decision result, instead of assigning the same weight to the decision maker (DM) for all criteria, we propose a method to determine the weight of DM with respect to each criterion under linguistic environment by calculating the similarity degree between individual 2-tuple linguistic evaluation value and the mean given by all decision makers (DMs). Secondly, for the situations where the information about the criteria weights is partly known or completely unknown, we establish optimization models to determine the criteria weights by defining 2-tuple linguistic positive ideal solution (TL-PIS), 2-tuple linguistic right negative ideal solution (TL-RNIS) and 2-tuple linguistic left negative ideal solution (TL-LNIS) of the collective 2-tuple linguistic decision matrix. Thirdly, we propose a new method to solve MCGDM problems with partly known or completely unknown linguistic weight information. Finally, an illustrative example is given to demonstrate the calculation process of the proposed method.  相似文献   

7.
One of the most difficult tasks in multiple criteria decision analysis (MCDA) is determining the weights of individual criteria so that all alternatives can be compared based on the aggregate performance of all criteria. This problem can be transformed into the compromise programming of seeking alternatives with a shorter distance to the ideal or a longer distance to the anti-ideal despite the rankings based on the two distance measures possibly not being the same. In order to obtain consistent rankings, this paper proposes a measure of relative distance, which involves the calculation of the relative position of an alternative between the anti-ideal and the ideal for ranking. In this case, minimizing the distance to the ideal is equivalent to maximizing the distance to the anti-ideal, so the rankings obtained from the two criteria are the same. An example is used to discuss the advantages and disadvantages of the proposed method, and the results are compared with those obtained from the TOPSIS method.  相似文献   

8.
QUALIFLEX, a generalization of Jacquet-Lagreze’s permutation method, is a useful outranking method in decision analysis because of its flexibility with respect to cardinal and ordinal information. This paper develops an extended QUALIFLEX method for handling multiple criteria decision-making problems in the context of interval type-2 fuzzy sets. Interval type-2 fuzzy sets contain membership values that are crisp intervals, which are the most widely used of the higher order fuzzy sets because of their relative simplicity. Using the linguistic rating system converted into interval type-2 trapezoidal fuzzy numbers, the extended QUALIFLEX method investigates all possible permutations of the alternatives with respect to the level of concordance of the complete preference order. Based on a signed distance-based approach, this paper proposes the concordance/discordance index, the weighted concordance/discordance index, and the comprehensive concordance/discordance index as evaluative criteria of the chosen hypothesis for ranking the alternatives. The feasibility and applicability of the proposed methods are illustrated by a medical decision-making problem concerning acute inflammatory demyelinating disease, and a comparative analysis with another outranking approach is conducted to validate the effectiveness of the proposed methodology.  相似文献   

9.
This paper proposes a method for solving stochastic multiple criteria decision making (MCDM) problems, where evaluations of alternatives on considered criteria are random variables with known probability density functions or probability mass functions. Probabilities on all possible results of pairwise comparisons of alternatives are first calculated using Probability Theory. Then, all possible results of pairwise comparisons are classified into superior, indifferent and inferior ones using a predefined identification rule. Consequently, the probabilities on all possible results of pairwise comparisons are partitioned into superior, indifferent and inferior probabilities. Furthermore, based on the derived probabilities, an algorithm is developed to rank the alternatives. Finally, a numerical example is used to illustrate the feasibility and validity of the proposed method.  相似文献   

10.
In our previous work published in this journal, we showed how the Hit-And-Run (HAR) procedure enables efficient sampling of criteria weights from a space formed by restricting a simplex with arbitrary linear inequality constraints. In this short communication, we note that the method for generating a basis of the sampling space can be generalized to also handle arbitrary linear equality constraints. This enables the application of HAR to sampling spaces that do not coincide with the simplex, thereby allowing the combined use of imprecise and precise preference statements. In addition, it has come to our attention that one of the methods we proposed for generating a starting point for the Markov chain was flawed. To correct this, we provide an alternative method that is guaranteed to produce a starting point that lies within the interior of the sampling space.  相似文献   

11.
To have an efficient control of a huge amount of inventory items, traditional approach is to classify the inventory into different groups. Different inventory control policies can then applied to different groups. The well-known ABC classification is simple-to-understand and easy-to-use. However, ABC analysis is based on only single measurement such as annual dollar usage. It has been recognized that other criteria are also important in inventory classification.  相似文献   

12.
13.
Case-based preference elicitation methods for multiple criteria sorting problems have the advantage of posing rather small cognitive demands on a decision maker, but they may lead to ambiguous results when preference parameters are not uniquely determined. We use a simulation approach to determine the extent of this problem and to study the impact of additional case information on the quality of results. Our experiments compare two decision analysis tools, case-based distance sorting and the simple additive weighting method, in terms of the effects of additional case information on sorting performance, depending on problem dimension – number of groups, number of criteria, etc. Our results confirm the expected benefit of additional case information on the precision of estimates of the decision maker’s preferences. Problem dimension, however, has some unexpected effects.  相似文献   

14.
his paper provides a review of multiple criteria decision analysis (MCDA) for cases where attribute evaluations are uncertain. The main aim is to identify different tools which can be used to represent uncertain evaluations, and to broadly survey the available decision models that can be used to support uncertain decision making. The review includes models using probabilities or probability-like quantities; explicit risk measures such as quantiles and variances; fuzzy numbers, and scenarios. The practical assessment of uncertain outcomes and preferences associated with these outcomes is also discussed.  相似文献   

15.
This paper provides a categorized bibliography on the application of the techniques of multiple criteria decision making (MCDM) to problems and issues in finance. A total of 265 references have been compiled and classified according to the methodological approaches of goal programming, multiple objective programming, the analytic hierarchy process, etc., and to the application areas of capital budgeting, working capital management, portfolio analysis, etc. The bibliography provides an overview of the literature on “MCDM combined with finance,” shows how contributions to the area have come from all over the world, facilitates access to the entirety of this heretofore fragmented literature, and underscores the often multiple criterion nature of many problems in finance.  相似文献   

16.
In this paper we presented an extended version of the Ng-modelg [W.L. Ng, A simple classifier for multiple criteria ABC analysis, European Journal of Operational Research 177 (2007) 344–353] for multi-criteria inventory classification. The proposed model is a nonlinear programming model which determines a common set of weights for all the items. Our model not only incorporates multiple criteria for ABC classification, but also maintains the effects of weights in the final solution, an improvement over the model proposed by Ng. An illustrative example is presented to compare our model and the Ng-model.  相似文献   

17.
18.
Models for Multiple Criteria Decision Analysis (MCDA) often separate per-criterion attractiveness evaluation from weighted aggregation of these evaluations across the different criteria. In simulation-based MCDA methods, such as Stochastic Multicriteria Acceptability Analysis, uncertainty in the weights is modeled through a uniform distribution on the feasible weight space defined by a set of linear constraints. Efficient sampling methods have been proposed for special cases, such as the unconstrained weight space or complete ordering of the weights. However, no efficient methods are available for other constraints such as imprecise trade-off ratios, and specialized sampling methods do not allow for flexibility in combining the different constraint types. In this paper, we explore how the Hit-And-Run sampler can be applied as a general approach for sampling from the convex weight space that results from an arbitrary combination of linear weight constraints. We present a technique for transforming the weight space to enable application of Hit-And-Run, and evaluate the sampler’s efficiency through computational tests. Our results show that the thinning factor required to obtain uniform samples can be expressed as a function of the number of criteria n as φ(n) = (n − 1)3. We also find that the technique is reasonably fast with problem sizes encountered in practice and that autocorrelation is an appropriate convergence metric.  相似文献   

19.
Within the multicriteria aggregation–disaggregation framework, ordinal regression aims at inducing the parameters of a decision model, for example those of a utility function, which have to represent some holistic preference comparisons of a Decision Maker (DM). Usually, among the many utility functions representing the DM’s preference information, only one utility function is selected. Since such a choice is arbitrary to some extent, recently robust ordinal regression has been proposed with the purpose of taking into account all the sets of parameters compatible with the DM’s preference information. Until now, robust ordinal regression has been implemented to additive utility functions under the assumption of criteria independence. In this paper we propose a non-additive robust ordinal regression on a set of alternatives A, whose utility is evaluated in terms of the Choquet integral which permits to represent the interaction among criteria, modelled by the fuzzy measures, parameterizing our approach.  相似文献   

20.
This paper addresses multiple criteria group decision making problems where each group member offers imprecise information on his/her preferences about the criteria. In particular we study the inclusion of this partial information in the decision problem when the individuals’ preferences do not provide a vector of common criteria weights and a compromise preference vector of weights has to be determined as part of the decision process in order to evaluate a finite set of alternatives. We present a method where the compromise is defined by the lexicographical minimization of the maximum disagreement between the value assigned to the alternatives by the group members and the evaluation induced by the compromise weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号