首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Letter, pinning synchronization of a directed network with Markovian jump (DNMJ) and nonlinear perturbations is considered. By analyzing the structure of the network, a detailed pinning scheme is given to ensure the synchronization of all nodes in a DNMJ. This pinning scheme can overcome those difficulties on deciding which nodes needs to be pinned. This scheme can also identify the exact least number of pinned nodes for a DNMJ model. In addition, the time-varying polytopic directed network with Markovian jump is discussed. Finally, examples are provided to illustrate the effectiveness of the gained criteria.  相似文献   

2.
This Letter investigates the problem of synchronization in complex dynamical networks with time-varying delays. A periodically intermittent control scheme is proposed to achieve global exponential synchronization for a general complex network with both time-varying delays dynamical nodes and time-varying delays coupling. It is shown that the sates of the general complex network with both time-varying delays dynamical nodes and time-varying delays coupling can globally exponentially synchronize with a desired orbit under the designed intermittent controllers. Moreover, a typical network consisting of the time-delayed Chua oscillator with nearest-neighbor unidirectional time-varying delays coupling is given as an example to verify the effectiveness of the proposed control methodology.  相似文献   

3.
唐漾  黃偉強  方建安  苗清影 《中国物理 B》2011,20(4):40513-040513
In this paper,the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller,where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller,some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.  相似文献   

4.
This Letter investigates the synchronization problem of a complex network with nonidentical nodes, and proposes two effective control schemes to synchronize the network onto any smooth goal dynamics. By applying open-loop control to all nodes and placing adaptive feedback injections on a small fraction of network nodes, a low-dimensional sufficient condition is derived to guarantee the global synchronization of the complex network with nonidentical nodes. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network composed of nonidentical nodes, and an upper bound of impulsive intervals is estimated to ensure the global stability of the synchronization process. Numerical simulations are given to verify the theoretical results.  相似文献   

5.
In this Letter, exponential synchronization of a complex network with nonidentical time-delayed dynamical nodes is considered. Two effective control schemes are proposed to drive the network to synchronize globally exponentially onto any smooth goal dynamics. By applying open-loop control to all nodes and adding some intermittent controllers to partial nodes, some simple criteria for exponential synchronization of such network are established. Meanwhile, a pinning scheme deciding which nodes need to be pinned and a simply approximate formula for estimating the least number of pinned nodes are also provided. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network with nonidentical time-delayed dynamical nodes, and an estimate of the upper bound of impulsive intervals ensuring global exponential stability of the synchronization process is also given. Numerical simulations are presented finally to demonstrate the effectiveness of the theoretical results.  相似文献   

6.
The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of the network. An interesting result is that a lower cost is achieved by using the control scheme of pinning nodes with smaller degrees. Some strict mathematical analyses are presented for achieving a lower cost in the synchronization of different star-shaped networks. Numerical simulations on some non-regular complex networks generated by the Barabási--Albert model and various star-shaped networks are performed for verification and illustration.  相似文献   

7.
A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme.  相似文献   

8.
王树国  姚洪兴 《中国物理 B》2012,21(5):50508-050508
This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.  相似文献   

9.
In this paper, cluster synchronization in community network with nonidentical nodes is investigated. By combining intermittency with a pinning control scheme, some effective controllers are designed. In the control scheme, only one node in each community is controlled and coupling weights of a spanning tree in each community are enhanced. Based on the Lyapunov function method and mathematical analysis technique, two results for achieving cluster synchronization are obtained. Noticeably, by introducing an adaptive strategy, some universal adaptive intermittent pinning controllers are designed for different networks. Finally, two numerical simulations are performed to verify the correctness of the derived results.  相似文献   

10.
Adaptive cluster synchronization in complex dynamical networks   总被引:1,自引:0,他引:1  
Xin Biao Lu 《Physics letters. A》2009,373(40):3650-3658
Cluster synchronization is investigated in different complex dynamical networks. In this Letter, a novel adaptive strategy is proposed to make a complex dynamical network achieve cluster synchronization, where the adaptive strategy of one edge is adjusted only according to its local information. A sufficient condition about the global stability arbitrarily grouped of cluster synchronization is derived. Several numerical simulations show the effectiveness of the adaptive strategy.  相似文献   

11.
Manfeng Hu  Zhenyuan Xu 《Physica A》2008,387(14):3759-3768
In this paper, we study the projective cluster synchronization in a drive-response dynamical network with 1+N coupled partially linear chaotic systems. Because the scaling factors characterizing the dynamics of projective synchronization remain unpredictable, pinning control ideas are adopted to direct the different scaling factors onto the desired values. It is also shown that the projection cluster synchronization can be realized by controlling only one node in each cluster. Numerical simulations on the chaotic Lorenz system are illustrated to verify the theoretical results.  相似文献   

12.
韩敏  张雅美  张檬 《物理学报》2015,64(7):70506-070506
针对同时具有节点时滞和耦合时滞的时变耦合复杂网络的外同步问题, 提出一种简单有效的自适应牵制控制方法. 首先构建一种贴近实际的驱动-响应复杂网络模型, 在模型中引入双重时滞和时变不对称外部耦合矩阵. 进一步设计易于实现的自适应牵制控制器, 对网络中的一部分关键节点进行控制. 构造适当的Lyapunov泛函, 利用 LaSalle不变集原理和线性矩阵不等式, 给出两个复杂网络实现外同步的充分条件. 最后, 仿真结果表明所提同步方法的有效性, 同时揭示耦合时滞对同步收敛速度的影响.  相似文献   

13.
This Letter investigates the global synchronization of a general complex dynamical network with non-delayed and delayed coupling. Based on Lasalle's invariance principle, adaptive global synchronization criteria is obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-delayed and delayed coupling can globally asymptotically synchronize to a given trajectory. What is more, the node dynamic need not satisfy the very strong and conservative uniformly Lipschitz condition and the coupling matrix is not assumed to be symmetric or irreducible. Finally, numerical simulations are presented to verify the effectiveness of the proposed synchronization criteria.  相似文献   

14.
This Letter considers the problem of controlling a weighted complex dynamical network with coupling time-varying delay toward an assigned evolution. Adaptive controllers have been designed for nodes of the controlled network. Analytical results show that the states of the weighted dynamical network can globally asymptotically synchronize onto a desired orbit under the designed controllers. In comparison with the common linear feedback controllers, the adaptive controllers have strong robustness against asymmetric coupling matrix, time-varying weights, delays, and noise. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed controllers.  相似文献   

15.
Robust impulsive synchronization of complex delayed dynamical networks   总被引:1,自引:0,他引:1  
This Letter investigates robust impulsive synchronization of complex delayed dynamical networks with nonsymmetrical coupling from the view of dynamics and control. Based on impulsive control theory on delayed dynamical systems, some simple yet generic criteria for robust impulsive synchronization are established. It is shown that these criteria can provide a novel and effective control approach to synchronize an arbitrary given delayed dynamical network to a desired synchronization state. Comparing with existing results, the advantage of the control scheme is that synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

16.
In this Letter, without assuming the symmetry of the coupling matrix, we investigate the global synchronization of the complex networks with non-delayed and delayed coupling based on the pinning controllers. Some sufficient conditions for the global synchronization by adding linear and adaptive feedback controllers to a part of nodes are obtained. Numerical examples are also provided to demonstrate the effectiveness of the theory.  相似文献   

17.
A sliding mode adaptive synchronization controller is presented with a neural network of radial basis function (RBF) for two chaotic systems. The uncertainty of the synchronization error system is approximated by the RBF neural network. The synchronization controller is given based on the output of the RBF neural network. The proposed controller can make the synchronization error convergent to zero in 5s and can overcome disruption of the uncertainty of the system and the exterior disturbance. Finally, an example is given to illustrate the effectiveness of the proposed synchronization control method.  相似文献   

18.
Impulsive projective synchronization in 1 +N coupled chaotic systems are investigated with the drive-response dynamical network (DRDN) model. Based on impulsive stability theory, some simple but less conservative criteria axe achieved for projective synchronization in DRDNs. Furthermore, impulsive pinning scheme is also adopted to direct the scaring factor onto the desired value. Numerical simulations on generalized chaotic unified system axe illustrated to verify the theoretical results.  相似文献   

19.
Yanli Zou  Guanrong Chen 《Physica A》2009,388(14):2931-2940
Previous studies concerning pinning control of complex-network synchronization have very often demonstrated that in an unweighted symmetrical scale-free network, controlling the high-degree nodes is more efficient than controlling randomly chosen ones; due to the heterogeneity of the node-degree or edge-connection distribution of the scale-free network, small-degree nodes have relatively high probabilities of being chosen at random but their control has less influence on the other nodes through the network. This raises the question of whether or not controlling the high-degree nodes is always better than controlling the small ones in scale-free networks. Our answer to this is yes and no. In this study, we carry out extensive numerical simulations to show that in an unweighted symmetrical Barabasi-Albert scale-free network, when the portion of controlled nodes is relatively large, controlling the small nodes becomes better than controlling the big nodes and controlling randomly chosen nodes has approximately the same effect as controlling the big ones. However, we also show that for normalized weighted scale-free networks, controlling the big nodes is in fact always better than controlling the small ones.  相似文献   

20.
We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号