首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, stable CotA laccase from Bacillus subtilis 168 was adsorbed on electrode modified with a thiol graphene‐gold nanoparticle (thGP‐AuNPs) nanocomposite film. The novel bacterial laccase biosensor was employed for quantitative detection of hydroquinone (HQ) and the electrochemical properties of this laccase biosensor were investigated. The results indicate that the immobilized CotA shows great oxidation activity towards HQ in the presence of oxygen and the biosensor shows linear electrocatalytic activity in the concentration range from 1.6 to 409.6 μM, with a detection limit of 0.3 μM. Further, the CotA modified electrode, when compared to fungal laccase‐modified biosensors, shows better alkaline stability (retaining approximately 80 % and 70 % of response current at pH 8 and 9, respectively) and reusability (retaining ~87 % of response current after 100 days). The development of this new kind of laccase on a biosensor will offer a novel tool for substance detection applications in hostile environments, especially for industrial pollutants.  相似文献   

2.
This work showcases the performance of [NiFeSe] hydrogenase from Desulfomicrobium baculatum for solar-driven hydrogen generation in a variety of organic-based deep eutectic solvents. Despite its well-known sensitivity towards air and organic solvents, the hydrogenase shows remarkable performance under an aerobic atmosphere in these solvents when paired with a TiO2 photocatalyst. Tuning the water content further increases hydrogen evolution activity to a TOF of 60±3 s−1 and quantum yield to 2.3±0.4 % under aerobic conditions, compared to a TOF of 4 s−1 in a purely aqueous solvent. Contrary to common belief, this work therefore demonstrates that placing natural hydrogenases into non-natural environments can enhance their intrinsic activity beyond their natural performance, paving the way for full water splitting using hydrogenases.  相似文献   

3.
《Analytical letters》2012,45(2):307-322
ABSTRACT

The effects of three experimental factors (pH, precursors, alcohol) on the sensing characteristics of these materials were screened by means of two-level factorial designs. The resulting materials turned out to be useful as luminescent probes for the measurement of dissolved and gaseous oxygen. The photochemical properties and the analytical performance of the RTP sensing phases have been studied by using both gas flow-injection analysis and continuous liquid flow-through systems. The proposed sensing materials were particularly suitable for measuring dissolved oxygen in natural waters. The detection limit attained was 0.004 mg.ml?1 and a typical precision of ± 1.0% al a 0.6 mg.ml?1 oxygen level was achieved. Response time for 90% of the final RTP value was less than 90s in a continuous flow mode. No hysteresis effects were noticed.  相似文献   

4.
Wang W  Zhang TJ  Zhang DW  Li HY  Ma YR  Qi LM  Zhou YL  Zhang XX 《Talanta》2011,84(1):71-77
A novel matrix, gold nanoparticles-bacterial cellulose nanofibers (Au-BC) nanocomposite was developed for enzyme immobilization and biosensor fabrication due to its unique properties such as satisfying biocompatibility, good conductivity and extensive surface area, which were inherited from both gold nanoparticles (AuNPs) and bacterial cellulose nanofibers (BC). Heme proteins such as horseradish peroxidase (HRP), hemoglobin (Hb) and myoglobin (Mb) were successfully immobilized on the surface of Au-BC nanocomposite modified glassy carbon electrode (GCE). The immobilized heme proteins showed electrocatalytic activities to the reduction of H2O2 in the presence of the mediator hydroquinone (HQ), which might be due to the fact that heme proteins retained the near-native secondary structures in the Au-BC nanocomposite which was proved by UV-vis and IR spectra. The response of the developed biosensor to H2O2 was related to the amount of AuNPs in Au-BC nanocomposite, indicating that the AuNPs in BC network played an important role in the biosensor performance. Under the optimum conditions, the biosensor based on HRP exhibited a fast amperometric response (within 1 s) to H2O2, a good linear response over a wide range of concentration from 0.3 μM to 1.00 mM, and a low detection limit of 0.1 μM based on S/N = 3. The high performance of the biosensor made Au-BC nanocomposite superior to other materials as immobilization matrix.  相似文献   

5.
The nucleophilic attack of water or hydroxide on metal-oxo units forms an O−O bond in the oxygen evolution reaction (OER). Coordination tuning to improve this attack is intriguing but has been rarely realized. We herein report on improved OER catalysis by metal porphyrin 1-M (M=Co, Fe) with a coordinatively unsaturated metal ion. We designed and synthesized 1-M by sterically blocking one porphyrin side with a tethered tetraazacyclododecane unit. With this protection, the metal-oxo species generated in OER can maintain an unoccupied trans axial site. Importantly, 1-M displays a higher OER activity in alkaline solutions than analogues lacking such an axial protection by decreasing up to 150-mV overpotential to achieve 10 mA/cm2 current density. Theoretical studies suggest that with an unoccupied trans axial site, the metal-oxo unit becomes more positively charged and thus is more favoured for the hydroxide nucleophilic attack as compared to metal-oxo units bearing trans axial ligands.  相似文献   

6.
Photo-catalytic elimination of organic contaminants plays a significant role in wastewater treatment. Developing a highly efficient photo-catalyst is one of the leading research topic. Herein, we reported the fabrication of a novel nanoporous NiO@SiO2 photo-catalyst by a simple ion-exchange method to eliminate the reactive dyes. The synthesized NiO@SiO2 catalyst exhibited fast photo-degradation and excellent adsorption capability and could efficiently remove Red FN-3GL dye from wastewater, due to a high loading of NiO and a large specific surface area, abundant electron-withdrawing groups, as well as narrow bandgap energy. In addition, the NiO@SiO2 photo-catalyst also displayed a high capability to remove reactive dyes over a wide range of pH values (pH 3–9). The prominent adsorption and photo-degradation of dyes were strongly dependent on the surface charge of the catalyst and the generation of hydroxyl radicals (OH?) by the catalyst, respectively. Furthermore, the NiO@SiO2 photo-catalyst also exhibited excellent recyclability, thus demonstrating the feasibility of practical applications in industries. The strategy of covering the metal oxide to nanoporous silica is a promising method for developing active photo-catalysts and applying them in the wastewater treatments.  相似文献   

7.
燃料电池技术的商业化进程主要受制于其阴极动力学缓慢的氧还原反应(ORR)所需的高铂量电催化剂,因此急需开发更高活性的电催化剂。过去十年里,人们在提高铂基催化剂ORR活性的研究取得了极大进展。本文概述了通过结构调控提升铂基纳米晶氧还原电催化性能的最新进展,依据纳米晶的空间维度展开讨论,同时列举各类电催化材料的优缺点。基于理论和实验结果,本文重点讨论铂基纳米晶应用于氧还原电催化的构效关系,以及其对下一代电催化材料结构设计方面的潜在指导意义。最后,我们对此领域未来的研究方向做了展望。  相似文献   

8.
以碳纤维纸(CFP)为基底材料,通过水热生长铁镍前驱体、多巴胺包覆和焙烧转化的方法制备出FeNi合金纳米颗粒@氮掺杂碳(FeNi alloy@NC)复合催化剂.通过改变反应体系中Fe/Ni前驱体的摩尔比可改变合金组成为Fe0.64Ni0.36和FeNi)3,同时催化剂微观结构也由纳米管状变为花状团簇以及片层结构.在碱性介质中进行电化学析氧反应测试,发现FeNi3@NC(1∶3)催化剂表现出了最优的催化活性和稳定性,合金颗粒与NC层的协同相互作用、NC保护层的构建以及催化剂的三维微观立体结构是催化剂性能优异的主要原因.  相似文献   

9.
氧析出反应(OER)是裂解水、二氧化碳还原、以及可充电的锌空电池等许多技术中重要的半反应,但受限于其迟缓的反应动力学,开发高效的氧析出催化剂迫在眉睫.在OER出反应中,性能较好的非贵金属催化剂主要是第四周期过渡金属的一些化合物,如氧化物、氢氧化物、硫化物、硒化物、磷化物等等.在这些材料中,镍铁双金属化合物被认为是最优的氧析出材料,尤其是镍铁层状双氢氧化物(Ni Fe-LDHs)它拥有较大的电化学活性面积以暴露较多活性位点,同时镍铁两种过渡金属元素存在协同效应,使得其具有良好的催化性能.然而,这一类材料的OER性能仍然有优化的空间.研究表明,将硫化物氧化得到的氢氧化物会有少量的硫元素残留,这种硫残留的氢氧化物拥有十分优异的OER性能.为了进一步认识硫的引入对Ni Fe-LDHs的OER行为的影响,本文通过水热法合成了硫掺杂的Ni Fe-LDHs,考察了硫的掺杂量对催化剂性能的影响,验证了微量硫的存在对Ni Fe-LDHs的OER性能的贡献.扫描电镜图片显示,水热合成的催化剂是厚度为几十纳米的薄片,拥有较高的比表面积, X射线荧光光谱分析证明合成的硫掺杂Ni Fe-LDHs中镍铁的元素比例为4:1,而且硫的掺杂量并不影响催化剂的形貌和其中镍铁元素比.X射线光电子能谱分析表明,硫原子的引入使得铁原子结合能降低,即硫与铁的相互作用部分降低了铁的价态,这种硫和铁的相互作用能够优化OER反应中间体OH*与O*在铁活性位点上的吸附自由能,降低氧析出反应的过电势.电化学测试表明,拥有0.43%的硫掺杂Ni Fe-LDHs拥有最好的氧析出性能, 10 m A cm^-1下超电势仅有257 m V, Tafel斜率61.5 m V dec^-1.此后,随着硫掺杂量的提升,其性能先保持稳定,随后有所下降.在稳定测试中,硫掺杂的镍铁层状双氢氧化物在10 m Acm-1电流密度下循环30 h后过电位仅衰减14 m V.在对稳定性测试后的催化剂进行表征表明,催化剂发生了轻微了变形,但这对性能的影响不大.综上,本文提供了一种简便的通过非金属元素掺杂调控过渡金属氧化物的结构和电子态的方法,有望为设计高活性OER电催化剂提供新思路.  相似文献   

10.
A selective oxygen biosensor based on bilirubin oxidase (BOx) was developed. The sensor was used for determining oxygen profiles in a membraneless, single‐chamber microbial fuel cell (SCMFC), fed with raw wastewater. The linear response of the sensor was optimized by a diffusion layer of silica gel. A computer‐controlled stage was used to obtain accurate and precise measurements. Oxygen concentration in biofilms covering electrodes was measured, showing 3 mg L?1 of O2 in the bulk solution, decreasing to 0 mg L?1 in the cathodic biofilm. The MFC generated power in the range of 0–0.08 mW, associated to the oxygen content.  相似文献   

11.
以聚芳酰胺-多壁碳纳米管混合物为载体,利用漆酶表面氨基与聚芳酰胺主链端羧基的共价偶联以及碳纳米管与漆酶间的疏水作用,构筑了具有较高稳定性和电催化活性的漆酶修饰电极.并对该固酶修饰电极的固酶量、酶活力、电化学行为及其电催化氧还原的性能进行了表征.对漆酶分子具有亲和力的聚芳酰胺芳环结构及聚芳酰胺端羧基与漆酶表面氨基的共价偶联避免了漆酶的脱落和变性.而碳纳米管与聚芳酰胺的混合使得该三维修饰电极具有良好的电子导电性,并成功地实现了漆酶的氧化还原活性位与电极之间的直接电荷转移,这一点可由在0.73和0.38V附近观察到漆酶的T1和T2(漆酶的T1,T2铜活性位的形式电位分别为0.78和0.39V(vsNHE))铜活性位的两对氧化还原峰确认.漆酶的担载量为56.0mg·g-1,具有电化学活性的漆酶占总担载漆酶量的68%.在pH=4.4磷酸盐缓冲溶液中,该修饰电极上氧气还原的起始电位为0.55V,其对氧气的米氏常数KM为55.8μmo·lL-1,对氧气的检测限为0.57μmo·lL-1.在4℃下保存两个月后能实现直接电荷转移的漆酶量仅下降了14%左右而氧还原超电势提高了约50mV.结果表明该修饰电极有望用作酶基生物燃料电池的阴极和电流型氧气传感器.  相似文献   

12.
《中国化学快报》2021,32(8):2524-2528
To enhance the photodegradation ability of CeO2 for organic dyes, an effective strategy is to introduce oxygen vacancies (Vo). In general, the introduced Vo are simultaneously present both on the surface and in the bulk of CeO2. The surface oxygen vacancies (Vo-s) can decrease the band gap, thus enhancing light absorption to produce more photogenerated e for photodegradation. However, the bulk oxygen vacancies (Vo-b) will inhibit photocatalytic activity by increasing the recombination of photogenerated e and Vo-b. Therefore, regulating the concentrations of Vo-s to Vo-b is a breakthrough for achieving the best utilization of photogenerated e during photodegradation. We used an easy hydrothermal method to achieve tunable concentrations of Vo-s to Vo-b in CeO2 nanorods. The optimized CeO2 presents a 70.2% removal of rhodamine B after 120 min of ultraviolet−visible light irradiation, and a superior photodegradation performance of multiple organics. This tuning strategy for Vo also provides guidance for developing other advanced metal-oxide semiconductor photocatalysts for the photodegradation of organic dyes.  相似文献   

13.
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.  相似文献   

14.
Biomimetic electrochemical sensors are very promising not only due to their lower expense and longer stability than conventional enzymatic ones, but they also often suffer from simultaneously achieving high sensitivity and good selectivity. Here we present a well-defined Au@Co3O4/CeO2 yolk-shell nanostructure (YSN) that is first synthesized and exploited as highly efficient electrocatalysts for hydrogen peroxide (H2O2) detection. The introduced CeO2 in Co3O4 matrix greatly facilitates the migration of lattice oxygen, which increases the concentration of surface oxygen vacancies (Oa), remarkably enhancing the adsorption ability of H2O2 and promoting the decomposition of H2O2 for faster electron transfer than pristine Au@Co3O4 core-shell nanostructure (CSN). The abundant Oa of Au@Co3O4/CeO2 YSN is confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The as-prepared biomimetic sensor delivers a wide dynamic range (5.0 nM to 5.4 μM), a low limit of detection (LOD) (2.74 nM), and a high sensitivity (35.67 μA μM−1 cm−2), paving a new way to construct an ultrasensitive and selective enzyme-free biomimetic electrochemical sensor. Furthermore, the sensor is used to real-time monitor H2O2 released from human cervical cancer cells (HeLa) and human umbilical vein endothelial cells (HUVEC), demonstrating its great potential in practical applications.  相似文献   

15.
The influence of gamma radiation on reducing the population of some bacteria Bacillus and Lactobacillus that usually contaminate the sugar-cane must and its effects on acidity of the medium and viability of the yeast during fermentation were evaluated. The treatment with gamma radiation reduced the bacterial load of the sugar-cane must. Consequently, the volatile acidity produced during the fermentation of the must decreased and the viability of the yeast afterwards added increased.  相似文献   

16.
《Analytical letters》2012,45(15):2357-2368
Magnetic ferriferous oxide nanoparticles functionalized by phenylboronic acid were prepared and deposited on a magnetic electrode. The electrochemical behavior of glycoproteins was investigated by differential pulse voltammetry before and after the electrode was immersed into the glycoprotein solution. Under the optimized conditions, the changes of reduction peak current in potassium ferricyanide solution were linear with the concentration of glycoprotein between 1.0 × 10?6 and 2.0 × 10?5 grams per milliliter with a detection limit of 1.205 × 10?7 grams per milliliter. The modified electrode distinguished glycoproteins from nonglycoproteins across the linear range of the calibration curve.  相似文献   

17.
Polyphenol oxidases from eggplant have a high catalytic activity for the aerobic oxidation of catechol to o-quinone with selectivity over other phenolic substrates. An amperometric biosensor can therefore be constructed by incorporating selected portions of eggplant tissue in a carbon paste electrode. The proposed biosensor provides a selective response for catechol in the micromolar range, with a very fast response time and a useful lifetime of at least 3 weeks.  相似文献   

18.
The purpose of this work is to convert organic wastewater into oxidants(H2O and CO2) to promote biomass gasification during the chemical looping process to achieve high-H2/CO-ratio syngas. A tert-butanol solution was selected as the model organic wastewater to generate enough H2O and CO2 to promote corn stalk chemical looping gasification(CLG). A series of CLG experiments was conducted at 850℃ under various degrees of oxygen excess(Ω). An Ω of approximately 0.9 led to the highest hydrogen yield and fixed carbon conversion compared with the other cases. Chemometrics and thermodynamic analysis further validated the possibility of corn stalk CLG using a tert-butanol solution. The results show that CLG of biomass-organic wastewater can both treat organic waste and promote chemical looping processes.  相似文献   

19.
An amperometric biosensor for the determination of creatine was developed. The carbon rod electrode surface was coated with sarcosine oxidase (SOX) and creatine amidinohydrolase by cross-linking under glutaraldehyde vapour. The SOX from Arthrobacter sp. 1–1 N was purified and previously used for creation of a creatine biosensor. The natural SOX electron acceptor, oxygen, was replaced by an redox mediating system, which allowed amperometric detection of an analytical signal at +400-mV potential. The response time of the biosensor was less than 1 min. The biosensor showed a linear dependence of the signal vs. creatine concentration at physiological creatine concentration levels. The optimal pH in 0.1 M tris(hydroxymethyl)aminomethane (Tris)–HCl buffer was found to be at pH 8.0. The half-life of the biosensor was 8 days in 0.1 M Tris–HCl buffer (pH 8.0) at 20 °C. Principal scheme of consecutively followed catalytic reactions used to design a biosensor for the determination of creatine  相似文献   

20.
We have selected for phage displayed peptides that showed specific binding to a 2,4,6-trinitrotoluene (TNT) derivative, 2,4,6-trinitrobenzene (TNB) in environmentally relevant conditions, and have integrated the selected phage into a continuous flow immunosensor platform for the detection of TNT. A library of 12 random amino acid peptides (12-mers) displayed on phage was panned against TNB coupled to the protein bovine serum albumin (BSA) in a solution of artificial seawater. Eight phage clones, seven of which share an identical amino acid sequence, bound selectively to TNB-BSA in artificial seawater as judged by enzyme-linked immunosorbent assay (ELISA). Addition of TNT, inhibited binding of the phage. Whole phage were labeled with the dye cyanine 5 (Cy5), and incorporated into a flow sensor platform. Labeled phage were loaded onto a TNB-affi-gel packed column, and a reproducible signal, at least five times greater than background, was observed on repeat injections of 10 mg/l TNT dissolved in seawater. This study presents one of the first examples of phage selection in a non-physiological medium, and the first demonstration that dye-labeled phage can be integrated into a continuous flow sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号