首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
将磷钼酸(PMo12)修饰到电化学聚合制得的聚3,4-乙烯二氧噻吩(PEDOT)(PEDOT/GC)膜表面(PMo12/PEDOT/GC),随后电沉积Pt得Pt/PMo12/PEDOT/GC电极.研究了PMo12和PEDOT对电极氧化甲醇性能的影响.结果表明,PMo12改变了电极上负载Pt的形态和结构,导致Pt纳米结构边缘产生尖锐的刺状结构.Pt/PMo12/PEDOT/GC和Pt/PEDOT/GC电极有较好的甲醇氧化电催化活性,而前者尤佳.PEDOT不仅提高甲醇氧化的电流,还使甲醇的起始氧化电位负移.进一步修饰PMo12后,可明显增大甲醇氧化的电流.  相似文献   

2.
通过静电组装技术在碳圆盘电极(PGE)表面制备{聚二烯丙基二甲基氯化铵(PDDA)/多壁碳纳米管(MWCNT)}n/PDDA多膜,并采用循环伏安法在多膜表面电化学修饰一磷钼酸(PMo12)膜,构筑PGE/{PDDA/MWNTs}5/PDDA/PMo12复合膜修饰电极,研究该复合膜修饰电极电化学及其对溴酸盐(BrO3-)电催化还原性质.在此基础上建立毛细管电泳-PGE/{PDDA/MWNTs}5/PDDA/PMo12修饰电极电化学检法定饮用水中溴酸盐分析新方法.在优化实验条件下,电泳峰面积与溴酸根浓度在5.0×10-8~5.0×10-5mol/L范围内呈良好性关系(r=0.9954),检出为2.0×10-8mol/L(S/N=3).  相似文献   

3.
夏雅淋  邓春艳  向娟 《电化学》2012,18(4):365-370
利用掺硼碳纳米管(BCNTs)/GC电极研究了鸟嘌呤(G)和腺嘌呤(A)的电化学氧化行为. 与GC和CNTs/GC电极相比,BCNTs/GC电极具有更强的电催化活性,且响应电流明显增加. 两混合样品在BCNTs/GC电极上的氧化峰间隔较大,可实现对A和G的同时检测.  相似文献   

4.
董绍俊  金哲 《化学学报》1989,47(9):922-925
用循环伏安法研究了1:12磷钼杂多阴离子(PMo12)薄膜修饰电极的制备及其电化学行为, 发现PMo12膜强烈地吸附在玻璃碳电极表面, 溶液氢离子在PMo12膜改性电极的电化学过程中起着重要的作用, 而其它阴离子不参与这一过程, 在循环伏安法扫描过程中PMo12膜改性电极的稳定性很好。  相似文献   

5.
用电化学扫描法制备了{[PMo12O40]3--Pt/PAMAM}n多层复合膜,通过X射线光电子能谱(XPS)、循环伏安测定(CV)和原子力显微镜(AFM)对样品的化学组成和膜的均匀性进行了表征。测试和分析结果表明[PMo12O40]3--Pt和PAMAM通过静电相互作用形成了交替多层复合膜,且膜的增长均匀,[PMo12O40]3-和Pt粒子均匀分布在间隔剂PAMAM上。采用三电极体系的循环伏安电化学分析方法研究了样品在酸性溶液中对甲醇的电催化氧化活性,结果表明,与Pt/GCE催化剂相比,{[PMo12O40]3--Pt/PAMAM}n/GCE呈现出较高的电催化氧化活性和好的稳定性。  相似文献   

6.
王洁莹  陈燕鑫  陈声培  王鹏  孙世刚 《应用化学》2010,27(11):1296-1300
通过循环伏安法(CV)在玻碳(GC)电极表面电沉积出分布较为均匀的纳米Fe粒子,制得纳米Fe粒子修饰的GC(纳米Fe/GC)电极,再经“电荷置换”制得具有Fe核Pt壳结构的纳米粒子修饰的(纳米PtFe/GC)电极。 SEM结果显示,纳米Fe/GC和纳米PtFe/GC表面粒子的形貌均呈立方体形,分布较为均匀,粒径在60 nm左右。 纳米PtFe/GC电极对亚硝酸盐的还原具有很高的电催化活性。 3种电极的电催化活性顺序依次为:纳米Fe/GC<纳米Pt/GC<纳米PtFe/GC。 相对于纳米Pt/GC电极,纳米PtFe/GC电极的起始还原电位(Ei)正移了0.14 V,还原峰电流(ip)增大了3倍。  相似文献   

7.
通过静电层层组装技术在玻碳(GC)电极表面制备{多壁碳纳米管(MWCNT)/聚二烯丙基二甲基氯化铵(PDDA)}n多层膜,并采用循环伏安法在多层膜的表面电化学修饰一层磷钼酸(PMo12)膜,构筑GC/{MWCNT/PDDA}n-PMo12复合膜修饰电极.利用SEM对比观察{MWCNT/PDDA}n和{PDDA/MWCNT}n-PMo12的微观结构,并研究该复合膜修饰电极的电化学及其对溴酸盐(BrO3-)电催化还原性质.在此基础上研发一种基于GC/{MWCNT/PDDA}n-PMo12复合膜修饰电极的电流型BrO3-传感器,该传感器表现出明显增大的响应电流.在最优的实验条件下,采用电流时间曲线(i-t)法考察该复合膜修饰电极对BrO3-的安培响应.实验结果表明,该传感器在BrO3-浓度为50~400nmol/L的范围内具有良好的线性关系,相关系数R2为0.9950,响应时间为1.53s,检出限为20nmol/L,灵敏度为13.81mA(mmol/L)-1cm-2.  相似文献   

8.
本文采用电化学方法在玻碳电极上制备了keggin型磷钼酸(PMo12)-聚吡咯(Ppy)薄膜修饰电极,并探讨了该电极电催化机理。实验结果表明,该电极对水中的溴酸盐具有响应速度快,检测灵敏度高,稳定性好,能实现快速准确测定。BrO-3在0.005~0.1 mmo.lL-1浓度范围内,与修饰电极上的电流响应信号值呈线性关系,检出限为2μmol.L-1。该方法为研制水中溴酸盐的检测仪器提供了理论基础。  相似文献   

9.
用循环伏安法制备了金属氧化物(TiO2-WO3)负载硅钨酸盐聚苯胺膜修饰玻碳电极(PAn/SiW12/TiO2-WO3/GC),优化了聚合条件,并对该化学修饰电极的电化学行为,包括溶液pH值的影响和电极的稳定性等进行了研究。研究结果表明,此修饰电极聚合物膜不但保持了该杂多酸的电化学活性和电催化性能,又具有良好的稳定性。在0.5 mol/LH2SO4溶液中,该膜电极中的SiW12的第2个还原峰对BrO3-有很好电催化活性,催化过程符合EC平行催化机理。  相似文献   

10.
应用循环伏安法(CV),扫描电子显微镜(SEM)和电化学原位红外反射光谱(in situFTIRS)研究了不同介质对碳载铂纳米薄膜电极(Pt/GC)的表面结构以及该薄膜电极对甲酸电催化氧化性能的影响.结果表明,使用不同介质的镀铂溶液,均可电沉积出分布较为均匀的Pt粒子,但其尺寸与形貌却相差很大.当以H2SO4作介质,由循环伏安法于玻碳电极上电沉积Pt得到的(Pt/GC1)电极,其Pt粒子粒径约100~200 nm;而在HClO4介质得到的(Pt/GC2)电极,则含有两种Pt微晶:其一是立方体形,粒径约200 nm,其二为菜花状,粒径约400 nm.电化学循环伏安和原位红外反射光谱测试指明,不同介质制备的Pt/GC电极对甲酸的电催化氧化均表现出与本体铂电极(Pt)相类似的特性,即可通过活性中间体或毒性中间体将甲酸氧化至CO2,但不同结构的Pt/GC电极具有不同的电催化活性.进一步以Sb或Pb修饰Pt/GC电极,不仅可以有效地抑制毒性中间体CO的生成,而且还能显著提高其电催化活性.比较本文研究的7种电极,其电催化活性顺序依次为:Sb-Pt/GC2>Pb-Pt/GC2>Pb-Pt/GC1>Sb-Pt/GC1>Pt/GC2>Pt/GC1>Pt.  相似文献   

11.
Jacobs CB  Vickrey TL  Venton BJ 《The Analyst》2011,136(17):3557-3565
The surface properties of carbon-based electrodes are critically important for the detection of biomolecules and can modulate electrostatic interactions, adsorption and electrocatalysis. Carbon nanotube (CNT) modified electrodes have previously been shown to have increased oxidative sensitivity and reduced overpotential for catecholamine neurotransmitters, but the effect of surface functionalities on these properties has not been characterized. In this study, we modified carbon-fiber microelectrodes (CFMEs) with three differently functionalized single-wall carbon nanotubes and measured their response to serotonin, dopamine, and ascorbic acid using fast-scan cyclic voltammetry. Both carboxylic acid functionalized and amide functionalized CNTs increased the oxidative current of CFMEs by approximately 2-6 fold for the cationic neurotransmitters serotonin and dopamine, but octadecylamine functionalized CNTs resulted in no significant signal change. Similarly, electron transfer was faster for both amide and carboxylic acid functionalized CNT modified electrodes but slower for octadecylamine CNT modified electrodes. Oxidation of ascorbic acid was only increased with carboxylic acid functionalized CNTs although all CNT-modified electrodes showed a trend towards increased reversibility for ascorbic acid. Carboxylic acid-CNT modified disk electrodes were then tested for detection of serotonin in the ventral nerve cord of a Drosophila melanogaster larva, and the increase in sensitivity was maintained in biological tissue. The functional groups of CNTs therefore modulate the electrochemical properties, and the increase in sensitivity from CNT modification facilitates measurements in biological samples.  相似文献   

12.
本文研究了酒石酸修饰电极的制作,讨论了铜在酒石酸修饰电极上的反应机理,并确定了痕量铜的阳极溶出伏安法测定条件。  相似文献   

13.
介绍纳米金–壳聚糖修饰电极的制备方法及其测定抗坏血酸的分析应用。采用电沉积方法,将氯金酸与壳聚糖的混合电解液直接共沉积,制备了壳聚糖–纳米金修饰玻碳电极的电化学传感器。利用循环伏安法研究了抗坏血酸浓度、p H值等对抗坏血酸在修饰电极上的电化学行为的影响。实验结果表明,修饰电极对抗坏血酸具有良好的电催化氧化作用,抗坏血酸浓度在5×10~(–5)~1×10~(–3) mol/L范围内线性良好,回归方程为I_p=0.433 8c+0.881 9,相关系数为0.998 71。该法可指导纳米金–壳聚糖修饰电极的制备及抗坏血酸含量的测定。  相似文献   

14.
Gold electrodes were modified with self assembled layers (SAMs) composed of mercaptopropionic acid, thiodipropionic acid, dithiodipropionic acid, cysteamine and gold nanoparticles and used to study the electrooxidation of dopamine (DA) in solution at pH 7. SAMs endowed with gold nanoparticles gave the highest catalytic effect. The results showed that such electrodes are capable of resolving the oxidation peaks of DA, ascorbic acid, and uric acid which is most favourable with respect to the detection of DA in physiological matrices.
Figure
Gold electrodes modified with S-containing compound and gold nanoparticles were used for determination of dopamine in aqueous solution. The modified electrodes could clearly resolve the oxidation peaks of dopamine, ascorbic acid and uric acid with peak-to-peak separation enabling determination of these compounds in the presence of each other.  相似文献   

15.
多巴胺(DA)、肾上腺素(EP)和去甲肾上腺素(NE)等儿茶酚胺类神经递质是生物分子电化学研究的重要对象之一[1,2].它们在固体电极上的电子传递速率非常缓慢,且其本身或反应产物易在电极表面吸附,导致电极表面的钝化[3].利用具有特定功能的化学修饰电...  相似文献   

16.
Multiple electrodes, combined with a chemometric strategy to calibrate the measurement response, have been used for the determination of an analyte across a broader dynamic range than is possible with a single electrode. The model system used for the detection of copper comprised electrodes modified with a self-assembled monolayer. The electrodes were modified with the copper-complexing species (3-mercaptopropionic acid, thioctic acid, and the peptides cysteine and Gly-Gly-His) and copper was determined over concentrations ranging from nanomolar to millimolar using voltammetric analysis. We have demonstrated that by combining the calibration functions from the four electrodes a better estimate (i.e. with smaller variance) of the concentration of the analyte is obtained. Measurement uncertainty is expressed for independently prepared electrodes, which allows the possibility of commercial production and factory calibration. The principles of using multiple electrodes modified with recognition elements with different affinities for the target analyte to extend the dynamic range of sensors is a general one that could be applied to other analytes.  相似文献   

17.
A Cameroonian smectite clay has been transformed into Zn2+ homoionic form and then used to prepare film modified glassy carbon electrodes and carbon paste electrodes. These electrodes containing Zn2+ were exploited to prepare a mixed valence zinc hexacyanoferrate (ZnHCF). Cyclic voltammetry has been employed to monitor the in situ growth of ZnHCF on clay modified electrodes. Although interesting electrocatalytic properties toward UA were observed with these modified electrodes, the modified carbon paste electrodes were the most suitable for dopamine, uric acid and tryptophan detection and exhibited for these analytes extended linear range, high sensitivities, selectivity and low limit.  相似文献   

18.
A method is described for the production of screen-printed graphite electrodes and also for similar electrodes chemically modified with the electrocatalyst cobalt phthalocyanine. Using cyclic voltammetry, the electrochemical behaviour of these electrodes towards ascorbic acid, reduced glutatione and coenzyme A (CoA-SH) was investigated. The modified electrodes were found to give significant decreases in the over-potential required for the oxidation of these species at carbon electrodes. The useful electrochemical window for the unmodified carbon film electrodes was ?1.08 V to +0.85 V vs. SCE, using 1 μA background current cut-off points.Amperometry in stirred solutions was used to investigate the hydrodynamic behaviour of the electrodes and their calibration performance. The limits of detection for ascorbic acid and reduced glutathione at the modified films were 5 × 10?8 and 1 × 10?7 M, respectively. The calibration graphs were also linear up to 2 mM concentrations of both analytes. Using differential-pulse voltammetry, linear calibration graphs were obtained for both species up to 2.5 mM. This technique was also used to assess the reproducibility of the electrode manufacture; the coefficient of variation was 2.8% for 1.49 mM ascorbic acid and 6.9% for 0.92 mM reduced glutathione.  相似文献   

19.
Pandey PC  Singh V 《The Analyst》2011,136(7):1472-1480
Organically modified sol-gel glass (ormosil) matrix is utilized as a template for the electrochemical polymerization of aniline. The ormosil matrix is further modulated by encapsulation of: (a) tetracyanoquinodimethane (TCNQ), and (b) tetracyanoquinodimethane together with palladium (Pd). The presence of tetracyanoquinodimethane within ormosil matrix considerably influences the polymerization process of aniline and the same is significantly enhanced as compared to that of control. The presence of palladium within ormosil network further influence the polymerization process as compared to that of TCNQ only. The polyaniline obtained as PAni-TCNQ and PAni-TCNQ-Pd composites has been utilized for fabricating the modified electrodes. These modified electrodes are used to study the electrochemical sensing of ascorbic acid and acetylthiocholine. The results based on cyclic voltammetry, differential pulse voltammetry and amperometry justify that the electrode material exhibits excellent electrocatalytic activity for the oxidation of ascorbic acid and acetylthiocholine with major findings as compared to the control: (1) a negative shift to the order of ~340 mV vs. Ag/AgCl in the anodic overpotential for the electro-oxidation of ascorbic acid, (2) a significant increase in the anodic peak current for the oxidation of ascorbic acid, (3) an increase in the sensitivity of ascorbic acid analysis to the order of 7-fold for the modified electrodes, (4) acetylthiocholine undergoes direct oxidation with considerable increase in both anodic and cathodic peak currents and (5) an increase in the sensitivity of acetylthiocholine analysis to the order of 5-fold for the modified electrodes.  相似文献   

20.
Pandey PC  Upadhyay BC 《Talanta》2005,67(5):997-1006
We report herein the preparation of few chemically sensitized organically modified sol–gel glass (ormosil) films and sensing of dopamine at the surface of the modified electrodes derived from these films. The chemical sensitization in ormosil-modified electrodes is introduced by incorporating: (a) potassium ferricyanide and (b) either Nafion, or dibenzo-18-crown-6 or in situ generated Prussian blue from potassium ferricyanide. Electrochemical sensing of dopamine on the surfaces of these modified electrodes have been investigated and found that: (i) the presence of dibenzo-18-crown-6 facilitate the magnitude of dopamine sensing, (ii) conversion of potassium ferricyanide into Prussian blue also enhances the magnitude of dopamine sensing as compared to that of control and Nafion sensitized modified electrodes, (iii) both dibenzo-18-crown-6 and Nafion sensitized ormosil-modified electrodes are found selective to dopamine in the presence of ascorbic acid present under physiological concentration range. These finding again directed our attention to investigate the sensing of dopamine: (a) on dibenzo-18-crown-6 incorporated within Prussian blue sensitized modified electrode and (b) in the presence of varying concentrations of dibenzo-18-crown-6 in the Prussian blue modified electrodes. The investigations made on these lines again suggested the following: (1) increase in dibenzo-18-crown-6 concentrations in the modified electrode increases the magnitude of dopamine sensing upto an optimum concentration of macrocycle; (2) the detection limit of dopamine sensing goes down to 30 nM as compared to that of dibenzo-18-crown-6 incorporated with potassium ferricyanide which was found to the order of 100 nM. Investigations of the interference of ascorbic acid revealed that the presence of dibenzo-18-crown-6 introduces selectivity in dopamine sensing in the presence such common interfering analyte like ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号