首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu Y  Zhu M  Xu J  Zhang H  Tian M 《The Analyst》2011,136(20):4316-4320
Generation of too many reactive oxygen species (ROS) in relation to available antioxidants in living cells can cause oxidative stress, which is involved in the development and progression of several serious diseases. 2',7'-Dichlorodihydrofluorescein (DCFH) and its diacetate form, DCFH-DA, are widely used probes for monitoring general oxidative stress in cells, but DCFH oxidation is not always related to ROS. We report here a new method for quantifying cellular oxidative stress using a 2,2,6,6-tetramethyl- piperidine-1-oxyl (TEMPO)-based probe. We tested and verified the probe both in cell-free solutions and in living cells under conditions of increased or reduced oxidative stress. The probe revealed the oxidative stress status in living cells and may be a useful complement to DCFH fluorescent probes.  相似文献   

2.
With the rapid development of materials science,photosensitive materials have been widely used in the field of immunogenic cell death(ICD),which was on account of the reactive oxygen species(ROS)generation by photosensitizer under light irradiation inducing cellular oxidative stress during the dying of cells.Considerable researches related to photodynamic therapy(PDT)induced ICD were conducted and exhibited brilliant performance in cancer immunotherapy.Herein,a variety of different strategies for PDT induced ICD have been summarized and discussed to provide researchers more inspiration for cancer immunotherapy.  相似文献   

3.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen‐dependent. In contrast to ROS, the generation of oxygen‐irrelevant free radicals is oxygen‐independent. A new therapeutic strategy based on the light‐induced generation of free radicals for cancer therapy is reported. Initiator‐loaded gold nanocages (AuNCs) as the free‐radical generator were synthesized. Under near‐infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative‐stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

4.
Methotrexate (MTX) an anti-cancer drug as well as a photosensitizer is able to generate reactive oxygen species (ROS). Cu (II) is present associated with chromatin in cancer cells and has been shown to be capable of mediating the action of several anti-cancer drugs through production of ROS. The objective of the present study is to determine Cu (II) mediated anti-cancer mechanism of MTX under photoilluminated condition as well as alone, using alkaline single cell gel electrophoresis (comet assay). We have shown that cellular DNA breakage was enhanced when Cu (II) is used with MTX as compared to MTX alone. It is also shown that MTX alone as well as in combination with Cu (II) is able to generate oxidative stress in lymphocyte which is inhibited by scavengers of ROS but the pattern of inhibition was differential as was also demonstrated by plasmid nicking assay. Thus, we can say that MTX exhibit pro-oxidant action in presence of white light which gets elevated in presence of Cu (II). Hence, we propose that the mobilization of endogenous copper is possibly involved in killing of cancer cells by MTX during chemo-radio therapy besides acting as antifolate.  相似文献   

5.
The retinal pigment epithelium (RPE) is a highly metabolic layer of postmitotic cells lining Bruch's membrane in the retina. While these cells contain endogenous photosensitizers that mediate blue light‐induced damage, it has also been shown that blue light exposure damages mitochondrial DNA in RPE cells resulting in mitochondrial dysfunction and unregulated generation of reactive oxygen species (ROS). As RPE cells are postmitotic, it is imperative to decrease oxidative stress to these cells and preserve function. Dietary plant‐derived antioxidants such as anthocyanins offer a simple and accessible solution for decreasing oxidative stress. The anthocyanins malvidin‐3‐O‐glucoside (oenin) and pelargonidin‐3‐O‐glucoside (callistephin) were tested for their ability and efficacy in decreasing ROS generation and preserving mitochondrial redox activity in blue light‐irradiated ARPE‐19 cells. A significant decrease in intracellular ROS with concurrent increase in mitochondrial redox activity was observed for tested concentrations of oenin, while callistephin was beneficial to stressed cells at higher concentrations. These findings suggest anthocyanins are effective antioxidants in blue light‐stressed RPE cells in vitro. Additionally, oxidation products of these anthocyanins were examined using LC/MS and findings suggest the possibility of multiple oxidation sites for these compounds.  相似文献   

6.
Throughout the lifetime of an individual, light is focused onto the retina. The resulting photooxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration (AMD), the leading cause of legal blindness in the developed world, involves oxidative stress and death of the retinal pigment epithelium (RPE) followed by death of the overlying photoreceptors. Evidence suggests that damage due to exposure to light plays a role in AMD and other age-related eye diseases. In this work a system for light-induced damage and death of the RPE, based on the human ARPE-19 cell line, was used. Induction of mitochondria-derived reactive oxygen species (ROS) is shown to play a critical role in the death of cells exposed to short-wavelength blue light (425 +/- 20 nm). ROS and cell death are blocked either by inhibiting the mitochondrial electron transport chain or by mitochondria-specific antioxidants. These results show that mitochondria are an important source of toxic oxygen radicals in blue light-exposed RPE cells and may indicate new approaches for treating AMD using mitochondria-targeted antioxidants.  相似文献   

7.
Radiotherapy is one of the most common therapies for treating human cancers. Several studies have indicated that irradiation induces reactive oxygen species (ROS), which play an important role in radiation damage of the cell. It has been shown that Nigella sativa L. (NS) and reduced glutathione (GSH) have both an antiperoxidative effect on different tissues and a scavenger effect on ROS. The purpose of this study was to determine the antioxidant and radio-protective roles of NS and GSH against irradiation-induced oxidative injury in an experimental model. The NS group was administrated NS (1 mL/kg body weight), the GSH group was injected GSH (150 mg/kg body weight) and the control group was given physiologic saline solution (1 mL/kg body weight) for 30 consecutive days before exposure to a single dose of 6 Gy of radiation. Animals were sacrificed after irradiation. Malondialdehyde, nitrate, nitrite (oxidative stress markers) and ascorbic acid, retinol, beta-carotene, GSH and ceruloplasmin (nonenzymatic antioxidant markers) levels and peripheral blood lymphocytes were measured in all groups. There were statistically significant differences between the groups for all parameters (P < 0.05). Whole-body irradiation caused a significant increase in blood malondialdehyde, nitrate and nitrite levels. The blood oxidative stress marker levels in irradiated rats that were pretreated with NS and GSH were significantly decreased; however, non-enzymatic antioxidant levels were significantly increased. Also, our results suggest that NS and GSH administration prior to irradiation prevent the number of alpha-naphthyl acetate esterase peripheral blood T lymphocytes from declining. These results clearly show that NS and GSH treatment significantly antagonize the effects of radiation. Therefore, NS and GSH may be a beneficial agent in protection against ionizing radiation-related tissue injury.  相似文献   

8.
Ultraviolet-A (UVA) radiation causes significant oxidative stress because it leads to the generation of reactive oxygen species (ROS), leading to extensive cellular damage and eventual cell death either by apoptosis or necrosis. We evaluated the protective effects of cyanidin-3-O-beta-glucopyranoside (C-3-G) against UVA-induced apoptosis and DNA fragmentation in a human keratinocyte cell line (HaCaT). Treatment of HaCaT cells with C-3-G before UVA irradiation inhibited the formation of apoptotic cells (61%) and DNA fragmentation (54%). We also investigated antioxidant properties of C-3-G in HaCaT cells against ROS formation at apoptotic doses of UVA; C-3-G inhibited hydrogen peroxide (H2O2) release (an indicator of cellular ROS formation) after UVA irradiation. Further confirmation of the potential of C-3-G to counteract UVA-induced ROS formation comes from our demonstration of its ability to enhance the resistance of HaCaT cells to the apoptotic effects of both H2O2 and the superoxide anion (O2*-), two ROS involved in UVA-oxidative stress. Furthermore, in terms of Trolox Equivalent Antioxidant Activity, C-3-G treatment led to a greater increase in antioxidant activity in the membrane-enriched fraction than in the cytosol (55% vs 19%). The protective effects against UVA-induced ROS formation can be attributed to the higher membrane levels of C-3-G incorporation. These encouraging in vitro results support further research into C-3-G (and other anthocyanins) as novel agents for skin photoprotection.  相似文献   

9.
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.  相似文献   

10.
The release of reactive oxygen species (ROS) or reactive nitrogen species (RNS), i.e., the initial phase of oxidative stress, by macrophage cells has been studied by electrochemistry within a microfluidic device. Macrophages were first cultured into a detection chamber containing the three electrodes system and were subsequently stimulated by the microinjection of a calcium ionophore (A23187). Their production of ROS and RNS was then measured by amperometry at the surface of a platinized microelectrode. The fabricated microfluidic device provides an accurate measurement of oxidative release kinetics with an excellent reproducibility. We believe that such a method is simple and versatile for a number of advanced applications based on the detection of biological processes of secretion by a few or even a single living cell.  相似文献   

11.
Benzo[a]pyrene (BaP) is ubiquitously distributed in the environment, being considered the most phototoxic element among polycyclic aromatic hydrocarbon (PAHs). In presence of oxygen, PAHs can act as a photosensitizer by means of promoting photo-oxidation of biological molecules (photodynamic action, PDA). Thus, the present study analyzed the photodynamic action of BaP under UVA irradiation (BaP + UVA) and its oxidative effects on K562 cells. The evaluation of BaP kinetics showed that the highest intracellular concentration occurred after 18 h of incubation. Cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, DNA damage (breaks and DNA-protein cross-link [DNAPC]) were assessed after exposure to BaP, UVA and BaP plus UVA irradiation (BaP + UVA). Cell viability was decreased just after exposure to BaP + UVA. Lipid peroxidation and DNA breaks increased after BaP + UVA exposure, while the DNAPC increased after BaP, UVA and BaP + UVA exposure, suggesting that BaP + UVA effects were a consequence of both type II (producing mainly singlet oxygen) and type I (producing others ROS) mechanisms of PDA.  相似文献   

12.
Reactive oxygen species (ROS) can act as cytotoxic radicals to directly kill tumor cells and concurrently trigger immunogenic cell death (ICD) to efficiently achieve tumor therapy. Thus motivated, we herein present one perylene monoamide-based ROS supergenerator (PMIC-NC) that not only induces hypoxia-enhanced Type-I ROS burst aided by proton transients but also triggers Type-I/II ROS production by electron or energy transfer under near-infrared (NIR) light irradiation and also elicits a strong ICD effect. More interesting, the mitochondria- and lung-specific distribution of PMIC-NC also boosts the tumor therapeutic efficiency. As a result, PMIC-NC was employed for NIR-triggered photodynamic therapy, hypoxia-enhanced chemotherapy and also displayed robust immunogenicity for systemic tumor eradication. This work thus contributes one proof-of-concept demonstration of perylene as an integrated therapeutic platform for efficient immunogenic photochemotherapy against hypoxic tumors.  相似文献   

13.
A new class of near‐infrared (NIR)‐absorptive (>900 nm) photosensitizer based on a phenothiazinium scaffold is reported. The stable solid compound, o‐DAP, the oxidative form of 3,7‐bis(4‐methylaminophenyl)‐10H‐phenothiazine, can generate reactive oxygen species (ROS, singlet oxygen and superoxide) under appropriate irradiation conditions. After biologically evaluating the intracellular uptake, localization, and phototoxicity of this compound, it was concluded that o‐DAP is photostable and a potential selective photodynamic therapy (PDT) agent under either NIR or white light irradiation because its photodamage is more efficient in cancer cells than in normal cells and is without significant dark toxicity. This is very rare for photosensitizers in PDT applications.  相似文献   

14.
15.
16.
Photodynamic therapy removes unwanted or harmful cells by overproduction of reactive oxygen species (ROS). Fractionated light delivery in photodynamic therapy may enhance the photodynamic effect in tumor areas with insufficient blood supply by enabling the reoxygenation of the treated area. This study addresses the outcome of fractionated irradiation in an in vitro photodynamic treatment (PDT) system, where deoxygenation can be neglected. Our results show that fractionated irradiation with light/dark intervals of 45/60 s decreases ROS production and cytotoxicity of PDT. This effect can be reversed by addition of 1,3-bis-(2-chlorethyl)-1-nitrosurea (BCNU), an inhibitor of the glutathione reductase. We suggest that the dark intervals during irradiation allow the glutathione reductase to regenerate reduced glutathione (GSH), thereby rendering cells less susceptible to ROS produced by PDT compared with continuous irradiation. Our results could be of particular clinical importance for photodynamic therapy applied to well-oxygenated tumors.  相似文献   

17.
A series of polythiophene derivatives with substantially higher azobenzene contents in the side chains were prepared via copolymerization of 3‐hexylthiophene with four different types of 4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate. The alkyl spacers with different lengths, i.e. butyl, hexyl, octyl and undecyl groups were used between the azobenzene group and the thiophene ring. The compositions, structures and thermal properties of these polythiophene derivatives were characterized. The structural dependence of photoluminescent emission, photochromic behavior of these copolymers were systematically studied and compared with poly(3‐hexylthiophene). The results show that the azobenzene substitution renders the polythiophene some interesting optical properties that can be modulated by UV light irradiation. In the azobenzene modified polythiophene, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo‐induced transcis isomerization of the azobenzene pendant groups has a significant effect on photoluminescent emission, particularly when short spacers are used between azobenzene groups and the main chain. However, the effect becomes less prominent when longer spacers are used between the azobenzene group and the main chain. Furthermore, UV irradiation of the copolymers also resulted in an increase in intensity and broadening of bandwidth for the absorption peak associated with the polythiophene backbones. Again the magnitude of intensity changes upon UV irradiation were found to be dependent on the spacer length between the azobenzene group and polythiophene main chain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
N‐Heterocyclic carbene (NHC) boranes undergo oxidative hydrolysis to give imidazolium salts with excellent kinetic selectivity for HOCl over other reactive oxygen species (ROS), including peroxides and peroxynitrite. Selectivity for HOCl results from the electrophilic oxidation mechanism of NHC boranes, which stands in contrast to the nucleophilic oxidation mechanism of arylboronic acids with ROS. The change in polarity that accompanies the conversion of NHC boranes to imidazolium salts can control the formation of emissive excimers, forming the basis for the design of the first fluorescence probe for ROS based on the oxidation of B?H bonds. Two‐photon microscope (TPM) ratiometric imaging of HOCl in living cells and tissues is demonstrated.  相似文献   

19.
Oxidative stress caused by the production of reactive oxygen species (ROS) plays a major role in inflammatory processes. We hypothesized that modulation of ROS via quercetin may protect against oxidative stress and inflammation. Thus, this study aimed to investigate the effects of quercetin on oxidative stress and inflammation in lung epithelial A549 cells. The lipopolysaccharide (LPS)-induced elevation of intracellular ROS levels was reduced after quercetin treatment, which also almost completely abolished the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) induced by LPS stimulation. In addition, quercetin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and reduced levels of inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6, which had increased significantly after LPS exposure. Our data demonstrated that quercetin decreased ROS-induced oxidative stress and inflammation by suppressing NOX2 production.  相似文献   

20.
Increased oxidative stress in metabolic complications like type 2 diabetes, dyslipidemia and cardiovascular disorders exerts potential health hazards in many facets. Enhanced production of reactive oxygen species (ROS) due to increased oxidative stress promotes the damage of many biologically important macromolecules. Hypochlorous acid (HOCl), a microbicidal agent is also known to be an important ROS sub-species. An enhanced generation of endogenous HOCl due to diseased condition therefore can be detrimental to health. In present work, a new quinoline-diaminomaleonitrile based probe (HQMN) has been designed for the selective detection of hypochlorite. The probe in hand shows a selective ratiometric emission change towards OCl?. The probe behaves as a highly selective and sensitive tool for the detection of OCl? over other analytes with a fast response time (within 100 s). Bioimaging study revealed that HQMN can detect endogenous OCl? in human monocytes and an increase in endogenous HOCl concentration has been witnessed in diabetic condition compared to healthy control. Thus HQMN can be used as an excellent fluorescent probe for dynamic tracking of hypochorite in living biological cells especially to identify diabetic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号