首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine.  相似文献   

2.
Derivatization at the injection port following hollow‐fiber‐based liquid–liquid–liquid microextraction with tetramethylammonium acetate as a dual‐function reagent, i.e. an acceptor and derivatization reagent, for the determination of benzoic acid (BA) and sorbic acid (SA) in real samples by GC was developed. BA and SA were extracted from aqueous samples to an organic phase impregnated into the pores of the hollow fiber wall, and then back‐extracted to the acceptor solution located inside the lumen of the hollow fiber. Upon injection, the extracted analytes were quantitatively derivatized to their methyl esters with tetramethylammonium acetate in the GC injection port. Several parameters related to the derivatization and extraction efficiency were optimized. The linearity was satisfactory over a concentration range of 0.1–50 mg/L with r > 0.993 for both analytes. The LODs were 2.0 μg/L for SA and 20 μg/L for BA. The recoveries (83–116%) and precisions (RSDs of 1.2–11.4% (n = 3)) were examined by analyzing real spiked samples. The enrichment factors of BA and SA were 300 and 425. The results demonstrated that this is a simple, rapid, accurate, and sensitive method for the determination of BA and SA in various samples.  相似文献   

3.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

4.
Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10–30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high‐performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2‐hydroxy ethanal.  相似文献   

5.
Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid–liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid–liquid microextraction was carried out using an organic solvent lighter than water (n‐hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05–100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4‐chlorophenol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol, respectively. The values of intra‐ and inter‐day relative standard deviations were in the range of 3.0–6.4 and 6.1–9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples.  相似文献   

6.
We have synthesized an organic–inorganic polyaniline–halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless‐steel wire and can be used as a fiber coating for solid‐phase microextraction. It was found that our new solid‐phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis.  相似文献   

7.
Gas chromatographic procedures are described for the determination of carboxylic acids and chlorinated anilines in water samples. Propionic acid and 2,6-difluorobenzoic acid in aqueous solution have been simultaneously alkylated and extracted by means of a continuous two-phase reaction system, and then quantitated by on-line coupled capillary gas chromatography; tetrahexyl-ammonium hydrogen sulfate was used as phase transfer catalyst and pentafluorobenzyl bromide as reagent. A factorial design approach was used to optimize on-line derivatization of aqueous propionic acid with regard to pH and concentration of phase transfer catalyst. Alkylation and extraction, under optimized conditions, followed by quantitation of the pentafluorobenzyl ester by flame ionization detection furnished a linear calibration for concentrations between 0.1 and 10 μg/ml. The relative standard deviation was 9–15 %. The continuous two-phase reaction system was also used to determine (chlorinated) anilines present in water at concentrations of 0.1–1 μg/ml; pentafluorobenzoyl chloride was used as reagent and analysis was performed by capillary gas chromatography with flame ionization or electron capture detection. The on-line acylation of p-chloroaniline was optimized with regard to pH, reagent concentration, and reaction time. The on-line reaction system worked satisfactorily for both applications, although excess reagent caused some problems with the chromatography.  相似文献   

8.
A method was developed for the determination of clenbuterol in meat using stable‐isotope‐dilution gas chromatography with mass spectrometry coupled with solid‐phase microextraction and on‐fiber derivatization. The samples were first homogenized with hydrochloric acid followed by protein deposition. After headspace solid‐phase microextraction and on‐fiber derivatization, the content of clenbuterol was measured with the aid of stable‐isotope dilution. The condition of solid‐phase microextraction was optimized by central composite design. The relative standard deviations, limit of detection, and recoveries for clenbuterol were 4.2–9.2%, 0.48 μg/kg, and 96–104%, respectively. The proposed method was satisfactory for analysis of real samples as compared with the Chinese standard method.  相似文献   

9.
Quantitative determination of amphetamine in plasma by the use of a novel electrophoric derivatization reagent, o‐(pentafluorobenzyloxycarbonyl)‐2,3,4,5‐tetrafluorobenzoyl chloride is described. Amphetamine can be quantitatively measured down to 49 pg/mL plasma using only 250 μL of sample due to the extraordinary sensitivity of the derivatives under negative ion chemical ionization MS. Plasma samples were made alkaline with carbonate buffer and treated with n‐hexane and reagent solution for 20 min, which, after concentration was measured by negative ion chemical ionization GC‐MS. The method is rapid as extraction and derivatization occur in one single step. [2H5]‐Amphetamine was used as an internal standard. Validation data are given to demonstrate the usefulness of the assay, including specificity, linearity, accuracy and precision, benchtop stability, freeze–thaw stability, autosampler stability, aliquot analysis, and prospective analytical batch size accuracy.  相似文献   

10.
Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3‐quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion‐pair solid‐phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion‐pair reagent, pH of the sample, extraction solvent, and type of ion‐pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85–110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra‐ and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection.  相似文献   

11.
In this work, for the first time, headspace (HS) single‐drop microextraction and simultaneous derivatization followed by GC‐MS was developed to determine the aliphatic amines in tobacco samples. In the HS extraction procedure, the mixture of derivatization reagent and organic solvent was employed as the extraction solvent for HS single‐drop microextraction and in situ derivatization of aliphatic amine in the samples. Fast extraction and simultaneous derivatization of the analytes were performed in a single step, and the obtained derivatives in the microdrop extraction solvent were analyzed by GC‐MS. The optimized experiment conditions were: sample preparation temperature of 80°C and time of 30 min, HS extraction solvent (the mixture of benzyl alcohol and 2,3,4,5,6‐pentafluorobenzaldehyde) volume of 2.0 μL, extraction time of 90 s. With the optimal conditions, the method validations were also studied. The method has good linearity (R2 more than 0.99), accepted precision (RSD less than 13%), good recovery (98–104%) and low limit of detection (0.11–0.97 μg/g). Finally, the proposed technique was successfully applied to the analyses of aliphatic amines in tobacco samples of seven different brands. It was further demonstrated that the proposed method offered a simple, low‐cost and reliable approach to determine aliphatic amines in tobacco samples.  相似文献   

12.
Chloroanisoles, particularly 2,4,6‐trichloroanisole, are commonly identified as major taste and odor compounds in water. In the present study, a simple and efficient method was established for the simultaneous determination of chloroanisoles and the precursor 2,4,6‐trichlorophenol in water by using low‐density‐solvent‐based simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography with electron capture detection. 2,4‐Dichloroanisole, 2,6‐dichloroanisole, 2,4,6‐trichloroanisole, 2,3,4‐trichloroanisole, and 2,3,6‐trichloroanisole were the chloroanisoles evaluated. Several important parameters of the extraction‐derivatization procedures, including the types and volumes of extraction solvent and disperser solvent, concentrations of derivatization agent and base, salt addition, extraction‐derivatization time, and temperature were optimized. Under the optimized conditions (80 μL of isooctane as extraction solvent, 500 μL of methanol as disperser solvent, 60 μL of acetic anhydride as derivatization agent, 0.75% of Na2CO3 addition w/v, extraction‐derivatization temperature of 25°C, without salt addition), a good linearity of the calibration curve was observed by the square of correlation coefficients (R2) ranging from 0.9936 to 0.9992. Repeatability and reproducibility of the method were < 4.5% and <7.3%, respectively. Recovery rates ranged from 85.2 to 101.4%, and limits of detection ranged from 3.0 to 8.7 ng/L. The proposed method was applied successfully for the determination of chloroanisoles and 2,4,6‐trichlorophenol in water samples.  相似文献   

13.
A novel solid phase microextraction fiber was prepared for the first time by using a sol–gel technique with hydroxypropyl‐β‐cyclodextrin‐functionalized reduced graphene oxide as the fiber coating material. The results verified that the β‐cyclodextrin was successfully grafted onto the surface of reduced graphene oxide and the coating possessed a uniform folded and wrinkled structure. The performance of the solid phase microextraction fiber was evaluated by using it to extract nine volatile aromatic compounds from water samples before determination with gas chromatography and flame ionization detection. Some important experimental parameters that could affect the extraction efficiency such as the extraction time, extraction temperature, desorption temperature, desorption time, the volume of water sample solution, stirring rate, as well as ionic strength were optimized. The new method was validated to be effective for the trace analysis of some volatile aromatic compounds, with the limits of detection ranging from 2.0 to 8.0 ng/L. Single fiber repeatability and fiber‐to‐fiber reproducibility were in the range of 2.5–9.4 and 5.4–12.9%, respectively. The developed method was successfully applied to the analysis of three different water samples, and the recoveries of the method were in the range from 77.9 to 113.6% at spiking levels of 10, 100, and 1000 ng/L, respectively.  相似文献   

14.
In this work, an efficient microextraction method was applied for the extraction of some chlorophenols in water samples. This method, termed filter‐based emulsification microextraction, is based on the dispersion of an extractant into an aqueous sample solution to accelerate the extraction process and the utilization of a Nylon syringe filter to break the emulsion. After phase separation, the method is coupled with gas chromatography as a final analyzer instrument. The overall derivatization/extraction time was about 90 s. The proposed method is centrifuge‐free, and it also provides a suitable sample clean‐up by filtration of the extracting phase. The effective parameters involved in the extraction method were optimized. Under the optimal experimental conditions, the method provided a good linearity in the range of 2.0–2000 ng/mL, extraction repeatabilities (relative standard deviations) below 9.4%, enrichment factors of 180–203, and limits of detection between 0.5 and 1.2 ng/mL.  相似文献   

15.
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow‐fiber liquid‐phase microextraction in the three‐phase mode. Hollow‐fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 μL of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 μg/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 μg/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates.  相似文献   

16.
Through the use of a homemade sol–gel‐derived fiber, a headspace solid‐phase microextraction technique coupled to gas chromatography with mass spectrometry was developed for the determination of fatty acids with long, even‐numbered carbon chains (C12–C24) in soil samples. The experimental parameters such as reaction time, temperature, and ionic strength that might affect derivatization, extraction, and desorption were investigated. Under the optimized conditions, the linearity of the method ranged from 0.1 to 100 mg/L with a correlation coefficient >0.997. The limit of detection values based on a signal‐to‐noise ratio of 3:1 were determined with the concentration from 0.39 to 39.4 μg/L. The recoveries of the method for the soil samples were from 91.15 to 108.1%. This developed method using a homemade fiber showed a higher sensitivity than that using a commercial polydimethylsiloxane fiber and was also for the analysis of real soil samples from the Paomaling geological park of China.  相似文献   

17.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

18.
Simultaneous derivatization and air‐assisted liquid–liquid microextraction using an organic that is solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p‐xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90–2.7 and 3.0–6.1 ng/mL, respectively. The enrichment and enhancement factors were in the ranges of 370–430 and 489–660, respectively. The method precision, expressed as the relative standard deviation, was within the range of 4–6% (= 6) and 4–9% (= 4) for intra‐ and interday precisions, respectively. The proposed method was successfully used for the determination of methyl‐, ethyl‐, and propyl parabens in cosmetic, hygiene and food samples, and personal care products.  相似文献   

19.
A simple, fast, sensitive, and low‐cost method was developed for the quantification of nitroaromatic compounds in water samples based on CO2‐assisted liquid‐phase microextraction using a switchable‐hydrophilicity solvent followed by gas chromatography detection. Dipropylamine was used as extraction solvent with switchable hydrophilicity that can be miscible or immiscible upon the addition or removal of CO2 as a reagent. Experimental parameters affecting the extraction efficiency such as the volume of acceptor phase, the volume of donor phase, pH of donor phase, ionic strength, and extraction time were investigated. Under the optimal conditions, detection limits and preconcentration factors were obtained in the ranges of 0.9–1.8 μg/L and 132–138, respectively. Also, the extraction recoveries of water samples were above 88%. Finally, the developed method was successfully applied to the determination of nitroaromatic compounds in real water samples.  相似文献   

20.
A sensitive method for determining sulfonamides in water was developed and validated through in situ derivatization and hollow‐fiber liquid‐phase microextraction with ultra‐high performance liquid chromatography and fluorescence detection. The target sulfonamides were sulfadiazine, sulfacetamide, sulfamerazine, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, and sulfisoxazole. Following in situ derivatization with fluorescamine, three‐phase hollow‐fiber liquid‐phase microextraction with an S 6/2 polypropylene hollow‐fiber membrane was applied automatically using a multipurpose autosampler. Experimental parameters including derivatization time, choice of organic phase, pH of donor and acceptor phase, stirring rate, extraction temperature and time were optimized. Under optimized conditions, the target sulfonamides achieved excellent linearity with correlation coefficients of 0.9924–0.9994 within the concentration range of 0.05–5 μg/L. The limits of detection of the eight sulfonamides were 3.1–11.2 ng/L, and the limits of quantification were 10.3–37.3 ng/L. Enrichment factors of 0.1 and 5 μg/L sulfonamides spiked in lake water were 14–60, and recoveries were 56–113% with relative standard derivations of 3–19%. Applied with the developed method, sulfamerazine and sulfamethoxazole were measurable in both influent and effluent water of the three sewage treatment plants in Guangzhou, China. The developed method was sensitive and provided an alternative method for simultaneously enriching and quantifying multiple sulfonamides in environmental water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号