首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid‐phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method was compared with the microwave‐assisted extraction coupled to headspace solid‐phase microextraction and headspace solid‐phase microextraction methods. More types of volatile components were obtained by using the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction technique was a simple, time‐saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco.  相似文献   

2.
Headspace solid‐phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid‐phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box‐plot analysis showed that except for cyclohexanone, 2‐ethyl‐1‐hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n‐heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions.  相似文献   

3.
A method was developed for the determination of nine volatile N‐nitrosamines in tobacco and smokeless tobacco products. The targets are N‐nitrosodimethylamine, N‐nitrosopyrrolidine, N‐nitrosopiperidine, N‐nitrosomorpholine, N‐nitrosoethylmethylamine, N‐nitrosodiethylamine, N‐nitrosodipropylamine, N‐nitrosobuylmethylmine, and N‐nitrosodibutylamine. The samples were treated by dispersive solid‐phase extraction using 1 g of primary secondary amine and 0.5 g of carbon and then analyzed by gas chromatography with tandem mass spectrometry with an electron impact ion source. The recoveries for the targets ranged from 84 to 118%, with <16% relative standard deviations at three spiking levels of 0.5, 1.25, and 2.5 ng/g. The limits of detection ranged from 0.03 to 0.15 ng/g. With the use of the proposed method, we detected the presence of six nitrosamines in the range of 0.4–30.7 ng/g. The study demonstrated that the method could be used as a rapid, convenient, and high‐throughput method for N‐nitrosamines analysis in tobacco matrix.  相似文献   

4.
A method was developed for the determination of clenbuterol in meat using stable‐isotope‐dilution gas chromatography with mass spectrometry coupled with solid‐phase microextraction and on‐fiber derivatization. The samples were first homogenized with hydrochloric acid followed by protein deposition. After headspace solid‐phase microextraction and on‐fiber derivatization, the content of clenbuterol was measured with the aid of stable‐isotope dilution. The condition of solid‐phase microextraction was optimized by central composite design. The relative standard deviations, limit of detection, and recoveries for clenbuterol were 4.2–9.2%, 0.48 μg/kg, and 96–104%, respectively. The proposed method was satisfactory for analysis of real samples as compared with the Chinese standard method.  相似文献   

5.
A sensitive and robust multiresidue method for the simultaneous analysis of 114 pesticides in tobacco was developed based on solid‐phase extraction coupled with gas chromatography and tandem mass spectrometry. In this strategy, tobacco samples were extracted with acetonitrile and cleaned up with a multilayer solid‐phase extraction cartridge Cleanert TPT using acetonitrile/toluene (3:1) as the elution solvent. Two internal standards of different polarity were used to meet simultaneous pesticides quantification demands in the tobacco matrix. Satisfactory linearity in the range of 10–500 ng/mL was obtained for all 114 pesticides with linear regression coefficients higher than 0.994. The limit of detection and limit of quantification values were 0.02–5.27 and 0.06–17.6 ng/g, respectively. For most of the pesticides, acceptable recoveries in the range of 70–120% and repeatabilities (relative standard deviation) of <11% were achieved at spiking levels of 20, 100, and 400 ng/g. Compared with the reported multiresidue analytical method, the proposed method provided a cleaner test solution with smaller amounts of pigments, fatty acids as well as other undesirable interferences. The development and validation of the high sensitivity, high selectivity, easy automation, and high‐throughput analytical method meant that it could be successfully used for the determination of pesticides in tobacco samples.  相似文献   

6.
A two‐phase electromembrane extraction (EME) was developed and directly coupled with gas chromatography mass spectrometry (GC‐MS) analysis. The proposed method was successfully applied to the simultaneous determination of imipramine, desipramine, citalopram and sertraline. The model compounds were extracted from neutral aqueous sample solutions into the organic phase filled in the lumen of the hollow fiber. This method was accomplished with 1‐heptanol as organic phase, by means of 60 V applied voltage and with the extraction time of 15 min. Experiments reported recoveries in the range of 69–87% from 1.2 mL neutral sample solution. The compounds were quantified by GC‐MS instrument, with acceptable linearity ranging from 1 to 500 ng mL?1 (R2 in the range of 0.989 to 0.998), and repeatability (RSD) ranging between 7.5 and 11.5% (n = 5). The estimated detection limits (S/N ratio of 3:1) were less than 0.25 ng mL?1. This novel approach based on two‐phase EME brought advantages such as simplicity, low‐costing, low detection limit and fast extraction with a total analysis time less than 25 min. These experimental findings were highly interesting and demonstrated the possibility of solving ionic species in the organic phase at the presence of electrical potential.  相似文献   

7.
A novel electrospun composite nanofiber‐based adsorbent (polyurethane/polystyrene‐silica) was fabricated, characterized, and used in the headspace solid‐phase microextraction of the acetylated derivatives of chlorophenols in water samples before gas chromatography with micro electron capture detection. The surface morphology, chemical composition, thermal stability, and structure of the fibers were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller and Barrett–Joyner–Halenda techniques. The effect of the main parameters influencing the efficiency of the method including extraction temperature, salt concentration, and extraction time was investigated and the optimized conditions were obtained. The linear dynamic ranges were 0.1–800 ng/mL. The relative standard deviations (n = 3) and the limits of detection were 2.64–9.57% and 0.0234–0.830 ng/mL, respectively. The relative recoveries for real samples (river water and sewage of our university campus) were between 90.8 and 111%.  相似文献   

8.
A headspace solid‐phase microextraction (HS‐SPME) method coupled to GC‐MS was developed in order to determine trace levels of tetramethyltin (TeMT) and inorganic tin (iSn) after ethylation to tetraethyltin (TeET) in various matrices. The derivatization of iSn and the extraction of both TeMT and iSn as TeET were performed in one step. Sodium tetraethylborate (NaBEt4) was used as derivatization agent and the volatile derivatives were absorbed on a PDMS‐coated fused silica fiber. The conditions for the HS‐SPME procedure were optimized in order to gain in repeatability and sensitivity. Several critical parameters of GC‐MS were also studied. The detection of TeMT and iSn as TeET peaks was performed by the SIM mode. The precision of the proposed method is satisfactory providing RSD values below 10% for both tin species and good linearity up to 10 μg/L. The developed method was successfully applied to the determination of tin species in several samples like canned fish, fish tissues, aquatic plants, canned mineral water and sea water. The proposed HS‐SPME‐GC‐MS method was proved suitable to monitor the concentration levels of toxic tin compounds in environmental and biological samples.  相似文献   

9.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

10.
Through the use of a homemade sol–gel‐derived fiber, a headspace solid‐phase microextraction technique coupled to gas chromatography with mass spectrometry was developed for the determination of fatty acids with long, even‐numbered carbon chains (C12–C24) in soil samples. The experimental parameters such as reaction time, temperature, and ionic strength that might affect derivatization, extraction, and desorption were investigated. Under the optimized conditions, the linearity of the method ranged from 0.1 to 100 mg/L with a correlation coefficient >0.997. The limit of detection values based on a signal‐to‐noise ratio of 3:1 were determined with the concentration from 0.39 to 39.4 μg/L. The recoveries of the method for the soil samples were from 91.15 to 108.1%. This developed method using a homemade fiber showed a higher sensitivity than that using a commercial polydimethylsiloxane fiber and was also for the analysis of real soil samples from the Paomaling geological park of China.  相似文献   

11.
A solid‐phase extraction combined with a liquid chromatography‐tandem mass spectrometry analysis has been developed and validated for the simultaneous determination of 44 pharmaceuticals belonging to different therapeutic classes (i.e., antibiotics, anti‐inflammatories, cardiovascular agents, hormones, neuroleptics, and anxiolytics) in water samples. The sample preparation was optimized by studying target compounds retrieval after the following processes: i) water filtration, ii) solid phase extraction using Waters Oasis HLB cartridges at various pH, and iii) several evaporation techniques. The method was then validated by the analysis of spiked estuarine waters and wastewaters before and after treatment. Analytical performances were evaluated in terms of linearity, accuracy, precision, detection, and quantification limits. Recoveries of the pharmaceuticals were acceptable, instrumental detection limits varied between 0.001 and 25 pg injected and method quantification limits ranged from 0.01 to 30.3 ng/L. The precision of the method, calculated as relative standard deviation, ranged from 0.3 to 49.4%. This procedure has been successfully applied to the determination of the target analytes in estuarine waters and wastewaters. Eight of these 44 pharmaceuticals were detected in estuarine water, while 26 of them were detected in wastewater effluent. As expected, the highest values of occurrence and concentration were found in wastewater influent.  相似文献   

12.
The quantity of soil fumigants has increased globally that has focused attention on their environmental behavior. However, simultaneous analysis of traces of fumigant residues is often unreported because analysis methods are not readily available to measure them at low concentrations. In this study, typical solvent extraction methods were compared with headspace solid‐phase microextraction methods. Both methods can be used for simultaneously measuring the concentrations of five commonly used soil fumigants in soil or water. The solvent extraction method showed acceptable recovery (76–103%) and intraday relative standard deviations (0.8–11%) for the five soil fumigants. The headspace solid‐phase microextraction method also showed acceptable recovery (72–104%) and precision rates (1.3–17%) for the five soil fumigants. The solvent extraction method was more precise and more suitable for analyzing relatively high fumigant residue levels (0.05–5 μg/g) contained in multiple soil samples. The headspace solid‐phase microextraction method, however, had a much lower limits of detection (0.09–2.52 μg/kg or μg/L) than the solvent extraction method (5.8–29.2 μg/kg), making headspace solid‐phase microextraction most suitable for trace analysis of these fumigants. The results confirmed that the headspace solid‐phase microextraction method was more convenient and sensitive for the determination of fumigants to real soil samples.  相似文献   

13.
In this work, a facile and environmentally friendly solid‐phase microextraction assay based on on‐fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7‐Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98–45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9–110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.  相似文献   

14.
D.C. Kapsimali 《Talanta》2010,80(3):1311-62
Two different derivatizing reagents were tested for the development of a fast and sensitive method for the determination of selenites (SeIV) in human urine. The reagents were sodium tetraethylborate (NaBEt4) and tetraphenylborate (NaBPh4), respectively, and the procedure is based on in situ derivatization of selenites in aqueous medium. Selenite ions are converted to diethylselenide (DESe) or diphenylselenide (DPhSe) and subsequently collected from the headspace by solid phase microextraction using a silica fiber coated with polydimethylsiloxane (HS-SPME). Finally, they are quantitated by GC/MS in SIM mode. Ethylation over phenylation was proved preferable for the headspace extraction because of the higher volatility of the diethyl-derivative of selenites. The optimization of the HS-SPME conditions was performed both in aqueous and urinary solutions. Under the optimum conditions for HS-SPME, the gas chromatographic conditions were also optimized. Between the two alkylation reagents tetraethylborate was proved more efficient and the quantitation was satisfactory. Aqueous certified reference materials were analyzed to evaluate the accuracy of the method. The precision of the method was 4.2% and the calculated detection limit was 0.05 μg L−1 for human urine.  相似文献   

15.
As a part of our search for environmentally friendly solvents to extract the active components of medicinal plants, two sampling techniques, supercritical fluid extraction (SFE) using CO(2) and solid-phase microextraction (SPME) were compared for their efficacy in the analysis of volatiles rhizome components emitted from the medicinal herbs Angelica gigas NAKAI (Korean danggui), Angelica sinensis (Chinese danggui), and Angelica acutiloba (Japanese danggui). A total of 54 compounds released from all of these varieties of Angelica rhizomes were separated and identified by gas chromatography-mass spectrometry (GC-MS). The composition of supercritical extracts from these plants was very different from the solid-phase microextraction products. More compounds were detected by SPME-GC-MS (41) than by SFE-GC-MS (17). The results of these analyses suggest that SFE may be useful for detecting the main components, decursinol angelate and decursin in Korean danggui, and butylidene dihydro-phthalide in both Chinese and Japanese danggui, whereas the results for SPME did not. The SFE method required specialized instrumentation, required little time to prepare the sample, and had a small sample size and no organic solvent. In sum, these results suggest that SFE is useful for extracting the volatile main components of danggui cultivars. Its simplicity, low cost and speed may allow SPME to increase the recovery of volatile components in general without disturbing the main components of the plant.  相似文献   

16.
A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources.  相似文献   

17.
The limiting factor in conventional quality assessments of transplanted organs, namely the invasiveness of tissue sample collection, has prompted much research on the field of transplantology to focus on the development of alternative evaluation methods of organ quality. In the present project, we undertake the challenge to address the need for a new analytical solution for graft quality assessments by using a novel metabolomic diagnostic protocol based on low‐invasive solid‐phase microextraction. Solid‐phase microextraction probes of ca. 0.2 mm coated with 4 mm long mixed‐mode extraction phase were inserted into rabbit kidneys immediately following euthanasia and after 2, 4, 6, and 21 h of preservation. Liquid chromatography–mass spectrometry analysis of the extracts was performed with the use of a reversed phase column and a Q‐Exactive Focus mass spectrometer operated in positive ionization mode. Statistical analysis of significantly changing compounds revealed metabolic profile changes in kidneys induced by ischemia and oxidative stress as a function of the duration of cold storage. The most pronounced alterations were reflected in levels of essential amino acids and purine nucleosides. Our findings demonstrate that the proposed approach may be successfully used to monitor changes in the metabolic profile of organs over time of preservation.  相似文献   

18.
Nanoporous silica was prepared and functionalized with amino propyl‐triethoxysilane to be used as a highly porous fiber‐coating material for solid‐phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave‐assisted extraction followed by headspace (HS) solid‐phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave‐assisted distillation HS‐SPME followed by GC‐MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans‐β‐Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample.  相似文献   

19.
采用顶空固相微萃取与气相色谱-质谱联用技术,对八角茴香中风味物质进行了分析。选用自制聚丙烯酸树脂涂层,对样品量、萃取时间、萃取温度、解吸时间等参数进行了优化,结果表明0.10g样品在60℃水浴中顶空萃取40min,250℃下解吸2min达到最佳条件。比较了顶空固相微萃取与传统水蒸气蒸馏两种前处理方法,分析结果非常相似。该方法可用于快速分析八角茴香中的风味物质。  相似文献   

20.
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid‐phase microextraction. Analyte detection and quantification were carried out using GC‐MS operated in chemical ionization mode. The corresponding D5‐ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r2>0.98) in the concentration range studied (LOQ – 2000 ng/g). The intra‐ and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol‐exposed newborns (>600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non‐exposed newborns, although the concentrations were much lower than those measured in exposed cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号