首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, two polyproline‐derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead‐based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.  相似文献   

2.
During the last decade, chiral monolithic stationary phases have been prepared and used for rapid enantioseparations in CEC and HPLC. Various chiral selectors are used to prepare these CSPs. The preparation, properties, and applications of these CSPs are discussed in this paper. Attempts have been made to describe optimization strategies and the chiral recognition mechanisms. A comparison of chiral separations in CEC and HPLC is described. Efforts have also been made to predict the future perspectives and challenges of chiral monolithic stationary phases. The most effective chiral selectors include polysaccharides, cyclodextrins, and macrocyclic glycopeptide antibiotics. These chiral phases produced acceptable analytical enantiomeric separation of a variety of racemates. However, the development of these CSPs for preparative‐scale separations is needed.  相似文献   

3.
Analytical HPLC methods using derivatized cellulose chiral stationary phases were developed for the direct enantioseparation of substituted [1-(imidazo-1-yl)-1-phenylmethyl)]-benzothiazolinone and benzoxazolinone derivatives with one chiral center. Those analogues of fadrozole constitute new potent nonsteroidal inhibitors of aromatase (P450 arom). The separations were made using normal phase methodology with a mobile phase consisting of n-hexane-alcohol (ethanol, 1-propanol, or 2-propanol) in various proportions, and a silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H), or tris-methylbenzoate (Chiralcel OJ). The effects of concentration of various aliphatic alcohols in the mobile phase were studied. A better separation was achieved on cellulose carbamate phase compared with the cellulose ester phase. The effects of structural features of the solutes along with the temperature of the column on the discrimination between the enantiomers were examined. Baseline separation (Rs > 1.5) was easily obtained in many cases.  相似文献   

4.
Three novel chiral stationary phases (CSPs) were prepared by regioselective chemical immobilization of mono(6A-N-allylamino-6A-deoxy)perphenylcarbamoylated (PICD) α-, β-, and γ-cyclodextrins (CDs) onto silica support via hydrosilylation. Their enantioseparation properties in high performance liquid chromatography (HPLC) were evaluated with a large spectrum of racemates including flavanone compounds, β-adrenergic blockers, amines and non-protolytic compounds. The effect of CD's cavity size on enantioseparation abilities was studied and discussed. The results indicated that CD's surface loading at silica support played an important role in the enantioseparation on these CSPs under normal-phase conditions while inclusion phenomena contributed the major driving force under reverse-phase conditions. As expected, α-PICD demonstrated the best resolutions towards flavonone and most aromatic alcohols under normal-phase conditions with the highest surface loading; while Fujimura's competitive inclusion model can be applied to explain the better enantioseparations towards β-adrenergic blockers, amines and non-protolytic compounds with α- and β-PICD CSPs. γ-PICD CSP showed superior enantioseparation ability for sterically encumbered analytes like flavanone compounds under both normal-phase and reversed phase conditions.  相似文献   

5.
《Electrophoresis》2018,39(19):2398-2405
The enantioseparation of twelve pairs of structurally related 1‐aryl‐1‐indanone derivatives was studied in the normal‐phase mode using three different polysaccharide‐type chiral stationary phases, namely Chiralpak IB, Chiralpak IC, and Chiralpak ID. n‐Hexane/2‐propanol and n‐hexane/ethanol were employed as mobile phases. Among all the investigated chiral columns, Chiralpak IC exhibited the most universal and the best enantioseparation ability toward all the racemates, particularly with the mobile phase composed of n‐hexane/2‐propanol (90/10, v/v). Then the effects of column temperature on retention and enantioselectivity were examined in the range of 25–40°C. Satisfactory enantioseparation was obtained at ambient temperature. The natural logarithm of retention and separation factors (ln k and ln α) versus the reciprocal of absolute temperature (1/T) (Van't Hoff plots) were found to be linear for all racemates, indicating that the retention and separation mechanisms were independent of temperature in the range investigated. Then, the thermodynamic parameters (ΔΔH°, ΔΔS°, and ΔΔG°) were calculated from Van't Hoff plots. These values indicated that the solute transfer from the mobile to stationary phase was enthalpically favorable, and the process of enantioseparation was mainly enthalpy controlled. At last, the impact of small changes in molecular structures of the tested 1‐indanone derivatives on enantioseparation was also discussed.  相似文献   

6.
cis‐Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis‐itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis‐itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two‐step high‐performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris‐(4‐methylbenzoate) and cellulose tris‐(3,5‐dimehylphenylcarbamate) columns with complementary selectivity for cis‐itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies.  相似文献   

7.
Polysaccharide‐based chiral stationary phases can be used for the enantioselective separation of a wide range of structurally different compounds. These phases are available with chiral selectors coated or immobilized on silica gel support. The means of attachment of the chiral selector to the carrier can influence the separation performance of these stationary phases. This paper deals with evaluation of differences in the separation abilities of coated Chiralpak AD‐RH versus immobilized Chiralpak IA amylose‐based stationary phases in the reversed–phase mode of high–performance liquid chromatography. A set of chiral analytes was separated under acidic and basic conditions. Differences were observed in the enantioseparation potential of the tested phases. The linear‐free energy relationship and additional evaluation of ionic interactions were used to ascertain whether the interactions that participate in retention and enantioseparation are affected by the means of preparation of these phases. All the interactions covered by the linear‐free energy relationship were significant for the studied phases and their absolute values were almost always higher for the coated phase. Ionic interactions were found to be more important on the immobilized stationary phase but did not contribute to any improvement in the enantioselective separation performance.  相似文献   

8.
Two new polysaccharide‐derived chiral selectors, namely, 6‐azido‐6‐deoxy‐3,5‐dimethylphenylcarbamoylated amylose and 6‐azido‐6‐deoxy‐3,5‐dimethylphenyl carbamoylated cellulose, were synthesized under homogeneous conditions and immobilized onto aminized silica gel by the Staudinger reaction, resulting in two new immobilized polysaccharide chiral stationary phases (CSPs). Their enantioseparation performances were investigated under normal‐phase mode by HPLC. Among 17 analytes, baseline separations of 12 pairs of enantiomers are achieved on the immobilized cellulose CSP, which demonstrates that this new cellulose material exhibits almost the same enantioseparation performance as the coated cellulose CSP. In addition, the amylose‐derived CSP presents limited enantiorecognition ability but certain complementarity with the immobilized and coated cellulose‐based materials. Neither metolachlor nor paclitaxel side chain acids are separated on two cellulose‐derived CSPs, but effective separations are obtained on the immobilized amylose column.  相似文献   

9.
Two cyclodextrin-based chiral stationary phases have been prepared by immobilization of functionalized mono-6-azido-β-CD derivatives to alkynyl modified silica via “click” chemistry and applied to the HPLC enantioseparation of various chiral compounds. The perphenylcarbamated CD CSP (CCP-CSP) exhibited excellent chiral recognition of a wide range of analytes including racemic aryl alcohols, flavonoids, bendroflumethiazide, atropine and some β-blockers. Methanol proved to be a better organic modifier than acetonitrile for most of the analytes with the exception of bendroflumethiazide. The “click” chemistry immobilized permethylated CD CSP (CCM-CSP) afforded poor chiral recognition for most analytes, but could resolve non-aromatic ionone derivatives which were not separated on CCP-CSP. These results suggest that resolution with cyclodextrin derived CSPs depend on a complex interplay of ‘host’–‘guest’ inclusion, hydrogen bonding, π–π and hydrophobic interactions.  相似文献   

10.
This short overview summarizes the development in the field of enantioselective monolithic chromatographic media and their application for pressure‐driven and electrokinetic separations. The major emphasis is put on the currently existing problems and the author's vision for their solution is provided. Due to the author's personal experience silica‐based monoliths are discussed in more detail although the key developments in the field of organic monolithic materials for separation of enantiomers are also discussed.  相似文献   

11.
Summary The reversed phase chromatographic properties of the [G1]-L-glutamic and ethyl ester-AC-silica (1), [G2]-L-glutamic acid ethyl ester-AC-silica (2) and the [G1]-L-glutamic acidt-butyl ester-AC-silica (3) dendrimer stationary phases were evaluated. Initial studies involved the comparison between these phases with a classic reversed phase (i.e. ODS1) by the separation of a standard reversed phase test mixture composed of dimethylphthalate, nitrobenzene, anisole, diphenylamine and fluorene. Separations were achieved with comparable performance to those obtained with the conventional reversed phase (ODS1). However, it was apparent that the chromatographic selectivity exhibited by the dendrimer stationary phases was different from that of the ODS1 phase. On a per mole basis, the dendrimers exhibited similar (and sometimes greater) affinity for these analytes compared with the ODS1 ligand. Subsequent chromatographic experiments were conducted upon the dendrimer chiral stationary phases using chiral analytes under reversed phase and normal phase conditions. Chiral resolution was not observed.  相似文献   

12.
The classical method for the preparation of immobilized polysaccharide‐based chiral stationary phases (CSPs) with a diisocyanate was improved. Cellulose or amylose was directly coated onto 3‐aminopropyl silica gel after it was dissolved in a mixture of N,N‐dimethylacetamide, LiCl, and pyridine, then immobilized onto silica gel with a diisocyanate, and finally allowed to react with an excess of corresponding isocyanate. Four polysaccharide derivatives, 3,5‐dimethylphenylcarbamate and 3,5‐dichlorophenylcarbamate of cellulose, and 3,5‐dimethylphenylcarbamate and 5‐chloro‐2‐methylphenylcarbamate of amylose, were immobilized onto silica gel utilizing this method. Compared with the classical diisocyanate method, the improved procedure avoided the derivatization and regeneration of 6‐hydroxyl groups of cellulose and amylose, and thus showed an advantage for simple and economical preparation. The relationships among the amount of diisocyanate used, immobilization efficiency, and enantioseparation on the cellulose‐based CSPs were investigated. Also, the solvent durability of the obtained CSPs was examined with eluents containing chloroform or THF. By utilizing these eluents, the chiral recognition abilities of the obtained CSPs for some of the tested racemates were improved.  相似文献   

13.
Summary The separation of enantiomers of substituted cyclohexanecarboxamides, benzamides and chemical precursors of Rho-kinase inhibitors was achieved using derivatized polysaccharide-based chiral stationary phases. Separations were by normal phase HPLC with a mobile phase ofn-hexane-alcohol (methanol, ethanol or 2-propanol) in various proportions, and a silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H), tris-methylbenzoate (Chiralcel OJ), a silica-based amylose tris-(S)-1-phenylethylcarbamate (Chiralpak AS), or tris-3,5-dimethylphenylcarbamate (Chiralpak AD). The effects of cencentration of various aliphatic alcohols in the mobile phase were investigated. The effect of structural features on the discrimination between the enantiomers was examined. The isolation of milligram amounts of enantiomers of two derivatives was performed on an analytical column by multiple repetitive injections under overload conditions.  相似文献   

14.
Chiral stationary phases were synthesized and their ability to separate racemic precursors from which they were derived was assessed. Taken in conjunction with homochiral recognition previously observed in the solid state, the results of this study reveal that a geometrically controlling π-π interaction has a profound influence on molecular recognition.  相似文献   

15.
Two hybrid polyacrylamide chiral stationary phases (CSPs) for HPLC have been synthesized by a new surface-initiated photo-induced radical polymerization approach of enantiopure N,N'-diacryloyl derivatives of (1R,2R)-diaminocyclohexane (CSP1) and (1R,2R)-diphenylethylenediamine (CSP2). This system is based on the activation of mesoporous silica microparticles by chemically bonded trichloroacetyl groups and dimanganese decacarbonyl as catalyst. UV irradiation was performed using a lab-made quartz photochemical reactor, ad hoc designed for the photo-induced polymerization process on the surface of microparticles. The two phases were evaluated and compared as chromatographic supports for the enantioselective HPLC of model chiral compounds. Their physico-chemical properties and chromatographic performances were also evaluated in comparison with those exhibited by the homologue CSPs obtained by the grafting-from thermal-induced process (CSP3 and CSP4). The new photopolymerization approach yielded higher grafting density than the thermal-induced one, especially in the case of the less reactive monomer (the diacryloyl derivative of (1R,2R)-diphenylethylenediamine), good chromatographic efficiency and a broad application field under normal phase and polar organic mode conditions.  相似文献   

16.
17.
Three novel chiral selectors 4a-c were synthesized from(S)-amino acids and(R)-1-phenyl-2-(4-methylphenyl)ethylamine.4a-cwere connected to 3-aminopropylsilanized silica gel to be used as the chiral stationary phase for HPLC.Five amino acid derivativesand two pyrethroid insecticides were fairly resolved on these three new chiral stationary phases under normal phase condition.  相似文献   

18.
Cyclofructans (CFs), a new class of chiral selectors, have been recently introduced for application in liquid chromatography and capillary electrophoresis. So far, derivatized CFs have performed interesting separation possibilities for a variety of compounds. The current work is focused on characterization of three different CF-based chiral stationary phases (CF-based CSPs), i.e. isopropyl carbamate cyclofructan 6 (IP-CF6), R-naphthylethyl carbamate cyclofructan 6 (RN-CF6) and dimethylphenyl carbamate cyclofructan 7 (DMP-CF7). The linear free energy relationship (LFER) model was used to reveal the dominant interactions participating in the complex retention mechanism. A set of 44 different test solutes, with known solvation parameters, was used to determine the regression coefficients of the LFER equation under two mobile-phase compositions in normal separation mode. The LFER results showed that hydrogen bond acidity, hydrophobicity and dipolarity/polarizibility mostly affect the retention and separation process on the CF-based columns in the studied separation systems.  相似文献   

19.
In this study, the chiral stationary phase was prepared by bonding vancomycin to 5 microm spherical silica gel according to "one-pot" synthetic strategies, and used to separate the enantiomers of zolmitriptan under polar ionic mode. The influences of mobile phase composition, such as the concentration and ratio of glacial acetic acid (HOAc) and triethylamine (TEA), on the enantioseparation were investigated, and the chiral recognition mechanism is discussed. It was found experimentally that the retention factors were increased with the increase of the HOAc/TEA concentration in a certain extent, and the ionic interactions, hydrogen bondings, and steric interactions may play key role together. The method is suitable for baseline separation of zolmitriptan enantiomers.  相似文献   

20.
Highly N‐deacetylated chitosan was chosen as a natural chiral origin for the synthesis of the selectors of chiral stationary phases. Therefore, chitosan was firstly acylated by various alkyl chloroformates yielding chitosan alkoxyformamides, and then these resulting products were further derivatized with 4‐methylphenyl isocyanate to afford chitosan bis(4‐methylphenylcarbamate)‐(alkoxyformamide). A series of chiral stationary phases was prepared by coating these derivatives on 3‐aminopropyl silica gel. The content of the derivatives on the chiral stationary phases was nearly 20% by weight. The chiral stationary phases prepared from chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(isopropoxyformamide) comparatively showed better enantioseparation capability than those prepared from chitosan bis(4‐methylphenylcarbamate)‐(n‐pentoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(benzoxyformamide). The tolerance against organic solvents of the chiral stationary phase of chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) was investigated, and the results revealed that this phase can work in 100% ethyl acetate and 100% chloroform mobile phases. Because as‐synthesized chiral selectors did not dissolve in many common organic solvents, the corresponding chiral stationary phases can be utilized in a wider range of mobile phases in comparison with conventional coating type chiral stationary phases of cellulose and amylose derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号