首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

2.
Ionic‐liquid‐based dispersive liquid–liquid microextraction in combination with high‐performance liquid chromatography and diode array detection has been proposed for the simultaneous analysis of four multiclass pesticide residues including carbaryl, methidathion, chlorothalonil, and ametryn from water samples. The major experimental parameters including the type and volume of ionic liquid, sample pH, type, and volume of disperser solvent and cooling time were investigated and optimum conditions were established. Under the optimum experimental conditions, limits of detection and quantification of the method were in the range of 0.1–1.8 and 0.4–5.9 μg/L, respectively, with satisfactory enrichment factors ranging from 10–20. The matrix‐matched calibration curves, which were constructed for lake water, as a representative matrix were linear over wide range with coefficients of determination of 0.996 or better. Intra‐ and interday precisions, expressed as relative standard deviations, were in the range of 1.1–9.7 and 3.1–7.8%, respectively. The relative recoveries of the spiked environmental water samples at one concentration level were in the range of 77–102%. The results of the present study revealed that the proposed method is simple, fast, and uses environmentally friendly extraction solvent for the analysis of the target pesticide residues in environmental water samples.  相似文献   

3.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

4.
A simple and selective high‐performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α‐ethynyl estradiol) in environmental matrices. For feces samples, solid–liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid‐phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed‐phase C18 column gradient‐eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10?2 (estrone), 4.11 × 10?4 (estradiol), 5.2 × 10?3 (estriol) and 7.18 × 10?3 μg/L (17α‐ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2–105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.  相似文献   

5.
A new method named graphene‐coated magnetic‐sheet solid‐phase extraction based on a magnetic three‐dimensional graphene sorbent was developed for the extraction of aflatoxins prior to high‐performance liquid chromatography with fluorescence detection. The use of a perforated magnetic‐sheet for fixing the magnetic nanoparticles is a new feature of the method. Hence, the adsorbent particles can be separated from sample solution without using an external magnetic field. This made the procedure very simple and easy to operate so that all steps of the extraction process (sample loading, washing, and desorption) were carried out continuously using two lab‐made syringe pumps. The factors affecting the performance of extraction procedure such as the extraction solvent, adsorbent dose, sample loading flow rate, ionic strength, pH, and desorption parameters were investigated and optimized. Under the optimal conditions, the obtained enrichment factors and limits of detection were in the range of 205–236 and 0.09–0.15 μg/kg, respectively. The relative standard deviations were <3.4 and 7.5% for the intraday (= 6) and interday (= 4) precisions, respectively. The developed method was successfully applied to determine aflatoxins B1, B2, G1, and G2 in different soy‐based food samples.  相似文献   

6.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

7.
Novel ionic‐liquid‐functionalized Fe3O4 magnetic nanoparticles were synthesized by the thiol‐ene click reaction. The prepared functionalized Fe3O4 nanoparticles possessed multiple interactions, such as electrostatic, hydrophobic, and π–π interactions. The functionalized Fe3O4 nanoparticles were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and transmission electron microscopy. Four kinds of linear alkylbenzene sulfonates, namely, sodium decylbenzenesulfonate, sodium undecylbenzene sulfonate, sodium dodecylbenzenesulfonate, and sodium tridecylbenzenesulfonate, were selected as model compounds to evaluate the applicability of adsorbents for extraction and subjected to high‐performance liquid chromatography analysis. In addition, the effects of various parameters, such as sorbent amount, pH value, ionic strength, sample volume, extraction time, and elution conditions on extraction efficiency were studied in detail. Under the optimum conditions, good linearities were attained, with correlation coefficients between 0.9912 and 0.9968. The proposed method exhibited limits of detection ranging from 0.061 to 0.099 μg/L for all the target analytes. The spiked recoveries of the target analytes in real water samples ranged from 86.3 to 107.5%, with relative standard deviations lower than 7.96%. The enrichment factors of the analytes ranged from 364 to 391, indicating that the obtained functionalized Fe3O4 nanoparticles can effectively extract trace target analytes from environmental water samples.  相似文献   

8.
In this study, a simple and low‐organic‐solvent‐consuming method combining an acetonitrile‐partitioning extraction procedure followed by “quick, easy, cheap, effective, rugged and safe” cleanup with ionic‐liquid‐based dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic‐liquid‐based dispersive liquid–liquid microextraction was performed using the ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid–liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples.  相似文献   

9.
A novel core–shell magnetic nano‐adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro‐solid‐phase extraction followed by determination of rhodamine 6G using high‐performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m‐aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (34) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid‐base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano‐adsorbent was successfully applied to dispersive micro‐solid‐phase extraction coupled to high‐performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0–99.1, 89.5–92.7, and 86.9–105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%.  相似文献   

10.
Zinc oxide nanoparticles have recently been used as effective adsorbent materials for sample pretreatment in analytical chemistry because of their excellent properties, such as high specific surface area, high effective porosity, non‐toxicity, and ease of fabrication. In this study, the zinc oxide nanoparticles functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, were fabricated and used as the adsorbent for the solid phase extraction of five triazine herbicides in corn for the first time. High‐performance liquid chromatography was employed for the determination of these triazine herbicides. Several experimental parameters affecting the extraction efficiency were investigated, including the volume of extraction solvent, the extraction time, the type of extraction solvent and elution solvent, the amount of absorbent, and the volume of elution solvent. By using the proposed method, low limits of detection and quantification for all the five triazine herbicides were obtained between 0.71–1.08 and 2.67–3.64 ng/g, respectively. Recoveries of the proposed method range from 89.05 to 100.33% with intra‐ and inter‐day relative standard deviations lower than 8.45%. The calibration curves are linear in the concentration range of 0.005–1.00 μg/g with the correlation coefficient higher than 0.9954.  相似文献   

11.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

12.
A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid–liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid–liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid–liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06–0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9–112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China.  相似文献   

13.
This paper describes an innovation of dispersive liquid–liquid microextraction enabling multiple‐component analysis of eight high‐priority food contaminants in two chemically distinctive families: Sudan dyes and phthalate plasticizers. To provide convenient sample handling for solid and solid‐containing matrices, a modified dispersive liquid–liquid microextraction procedure used an extractant precoated frit to perform simultaneous filtration, solvent mixing, and phase dispersion in one simple step. A binary ionic liquid extractant system was carefully tuned to deliver high quality analysis based only on affordable LC with diode array detector instrumentation. The method is comprehensively validated for robust quantification with good precision (6.9–9.8% RSD) in a linear 2–1000 μg/L range. Having accomplished enrichment factors up to 451, the treatment enables sensitive detection at 0.09–1.01 μg/L levels. Analysis of six high‐risk solid condiments and sauces further verified its practical applicability within a 70–120% recovery range. Compared to other approaches, the current dispersive liquid–liquid microextraction treatment offers major advantages in terms of minimal solvent (1.5 mL) and sample (0.1 g) consumption, ultra‐high analytical throughput (6 min), and the ability to handle complex solid matrices. The idea of performing simultaneous analysis for multiple contaminants presented here fosters a more effective mode of operation in food control routines.  相似文献   

14.
In this study, a simple effervescence‐assisted dispersive solid‐phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic‐liquid‐modified magnetic β‐cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one‐factor‐at‐a‐time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3–5.44%. The detection and quantitation limits were in the ranges of 0.07–0.38 and 0.23–1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost‐effective, environmentally friendly, and time‐saving.  相似文献   

15.
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1‐Octyl‐3‐methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10–1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal‐to‐noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220‐fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser.  相似文献   

16.
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.  相似文献   

17.
Microcystins (MCs), produced by freshwater cyanobacteria, can be serious water pollutants, so it is important to monitor their concentration in drinking water. We have developed a method for rapid and accurate determination of microcystin levels in environmental water, using magnetic solid‐phase extraction and high‐performance liquid chromatography with UV detection. The magnetic composite material, which was combined with cetylpyridinium chloride, was prepared by hydrothermal synthesis. The optimal extraction of microcystins in water sample was achieved by optimizing the amount of adsorbent, time of adsorption, ratio of eluting solvent, and volume of eluent. Under the optimal conditions, the limit of detection of MC‐LR was 0.001 μg/L, and the limit of quantification was 0.0028 μg/L. The limit of detection of MC‐RR was 0.001 μg/L, and the limit of quantification was 0.003 μg/L. These values are far lower than those established by the International Health Organization for the maximum concentration of microcystins in drinking water. The magnetic solid‐phase extraction adsorbent used in this method has the advantages of simple preparation, low price, and easy solid–liquid separation, and it can be used for the rapid and sensitive monitoring of trace microcystins in environmental water samples.  相似文献   

18.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

19.
Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.  相似文献   

20.
In this study, a simple and rapid extraction method based on the application of polypyrrole‐coated Fe3O4 nanoparticles as a magnetic solid‐phase extraction sorbent was successfully developed for the extraction and preconcentration of trace amounts of formaldehyde after derivatization with 2,4‐dinitrophenylhydrazine. The analyses were performed by high‐performance liquid chromatography followed by UV detection. Several variables affecting the extraction efficiency of the formaldehyde, i.e., sample pH, amount of sorbent, salt concentration, extraction time and desorption conditions were investigated and optimized. The best working conditions were as follows: sample pH, 5; amount of sorbent, 40 mg; NaCl concentration, 20% w/v; sample volume, 20 mL; extraction time, 12 min; and 100 μL of methanol for desorption of the formaldehyde within 3 min. Under the optimal conditions, the performance of the proposed method was studied in terms of linear dynamic range (10–500 μg/L), correlation coefficient (R2 ≥ 0.998), precision (RSD% ≤ 5.5) and limit of detection (4 μg/L). Finally, the developed method was successfully applied for extraction and determination of formaldehyde in tap, rain and tomato water samples, and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号