首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
Simultaneous quantification of brimonidine tartrate (BRI) and timolol maleate (TIM) in an eye drop formulation was performed by applying parallel factor analysis (PARAFAC) and trilinear (three way) partial least squares to the ultra performance liquid chromatography-photodiode array (UPLC-PDA) data array. In PARAFAC and 3 W-PLS1 applications, the co-elution of the related compounds in their chromatograms obtained in the presence of ornidazole as an internal standard (IS) was resolved, and then analyses were performed. On the other hand, a new conventional ultra performance liquid chromatography (UPLC) method was developed after long and tedious studies to get desirable elution of BRI and TIM in a chromatogram using different column and mobile phase system than that of chromatographic conditions of PARAFAC and 3 W-PLS1 applications. The performance and validity of all the proposed methods were confirmed by analyzing independent validation samples consisting of synthetic mixture, intraday and interday samples, and standard addition samples. Analysis results of BRI and TIM in eye drop samples by chemometric PARAFAC and 3 W-PLS1, and conventional UPLC were statistically compared to each other. It was concluded that PARAFAC and 3 W-PLS1 have shortest analysis time and lower cost than the developed conventional UPLC method for the analysis of the related compounds in commercial eye drop preparation with adequate selectivity and sensitivity.  相似文献   

2.
The high selectivities of liquid chromatography and mass spectrometry make liquid chromatography–mass spectrometry one of the most popular tools for quantitative analysis in complex chemical, biological, and environmental systems, while the potential mathematical selectivity of liquid chromatography–mass spectrometry is rarely investigated. This work discussed the mathematical selectivity of liquid chromatography–mass spectrometry by three‐way calibration based on the trilinear model, with an application to quantitative analysis of coeluting aromatic amino acids in human plasma. By the trilinear decomposition of the constructed liquid chromatography–mass spectrometry‐sample trilinear model and individual regression of the decomposed relative intensity versus concentration, the proposed three‐way calibration method successfully achieved quantitative analysis of coeluting aromatic amino acids in human plasma, even in the presence of uncalibrated interferent(s) and a varying background. This analytical method can ease the requirements for sample preparation and complete chromatographic separation of components, reduce the use of organic solvents, decrease the time of chromatographic separation, and increase the peak capacity of liquid chromatography–mass spectrometry. As a “green analytical method”, the liquid chromatography–mass spectrometry three‐way calibration method can provide a promising tool for direct and fast quantitative analysis in complex systems containing uncalibrated spectral interferents, especially for the situation where the coelution problem is difficult to overcome.  相似文献   

3.
Gastrodia elata from different geographical origins varies in quality and pharmacological activity. This study focused on the classification and identification of Gastrodia elata from six producing areas using high‐performance liquid chromatography fingerprint combined with boosting partial least‐squares discriminant analysis. Before recognition analysis, a principal component analysis was applied to ascertain the discrimination possibility with high‐performance liquid chromatography fingerprints. And then, boosting partial least‐squares discriminant analysis and conventional partial least‐squares discriminant analysis were applied in this study. Experimental results indicated that the adaptive iteratively reweighted penalized least‐squares algorithm could eliminate the baseline drift of high‐performance liquid chromatography chromatograms effectively. And compared with partial least‐squares discriminant analysis, the total recognition rates using high‐performance liquid chromatography fingerprint combined with boosting partial least‐squares discriminant analysis for the calibration sets and prediction sets were improved from 94 to 100% and 86 to 97%, respectively. In conclusion, high‐performance liquid chromatography combined with boosting partial least‐squares discriminant analysis, which has such advantages as effective, specific, accurate, non‐polluting, has an edge for discrimination of traditional Chinese medicine from different geographical origins. And the proposed methodology is a useful tool to classify and identify Gastrodia elata from different geographical origins.  相似文献   

4.
A novel methodology that combines high performance liquid chromatography with photodiode‐array detector (HPLC‐DAD) coupled with second‐order calibration method based on alternating trilinear decomposition (ATLD) algorithm was used in determination of the effective constituents such as costunolide and dehydrocostuslactone, in plasma sample and Chinese patent medicine Xiang Sha Yang Wei (XSYW) capsule. Complicated systems such as plasma and Chinese patent medicine which have intricate components are tedious to isolate and purify. The problem that chromatographic peaks are heavily overlapped among the analytes and interferents from the background matrices can be resolved, and the satisfactory quantification results have been gained with the help of the ATLD algorithm which utilized "mathematical separation" instead of partial "physical or chemical separation". Meanwhile, HPLC‐MS/MS method was used to validate the accuracy of the proposed determination method.  相似文献   

5.
A new chemometric determination by high-performance liquid chromatography (HPLC) with photodiode array (PDA) detection was implemented for the simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride in tablets. Three chemometric calibration techniques, classical least squares (CLS), principle component regression (PCR) and partial least squares (PLS) were applied to the peak area at multiwavelength PDA detector responses. The combinations of HPLC with chemometric calibration techniques were called HPLC-CLS, HPLC-PCR and HPLC-PLS. For comparison purposes the HPLC method called the classic HPLC method was used to confirm the results obtained from combined HPLC-chemometric calibration techniques. A good chromatographic separation between two drugs with losartan potassium as an internal standard was achieved using a Waters Symmetry C18 Column 5 microm 4.6+/-250 mm and a mobile phase containing 0.2 M acetate buffer and acetonitrile (v/v, 40:60). The multiwavelength PDA detection was measured at five different wavelengths. The chromatograms were recorded as a training set in the mobile phase. Three HPLC-chemometric calibrations and the classic-HPLC method were used to test the synthetic mixtures of naproxen sodium and pseudoephedrine hydrochloride in the presence of the internal standard. The HPLC-chemometric approaches were applied to real samples containing drugs of interest. The experimental results obtained from HPLC-chemometric calibrations were compared with those obtained by a classic HPLC method.  相似文献   

6.
Traditional Chinese medicine consists of complex phytochemical constituents. Selecting appropriate analytical markers of traditional Chinese medicine is a critical step in quality control. Currently, the combination of fingerprinting and efficacy evaluation is considered as a useful method for screening active ingredients in complex mixtures. This study was designed to develop an orthogonal partial least squares model for screening bioactive quality control markers of QishenYiqi dripping pills based on the fingerprint–efficacy relationship. First, the chemical fingerprints of 49 batches of QishenYiqi dripping pill samples were established by ultra‐high performance liquid chromatography coupled with a photodiode array detector. Second, ultra‐high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry was exploited to systematically investigate the 36 copossessing fingerprint components in QishenYiqi dripping pills. The vascular protective activity of QishenYiqi dripping pills was determined by using a cell counting kit‐8 assay. Finally, fingerprint–efficacy relationship was established by orthogonal partial least squares model. The results indicated that ten components exhibited strong correlation with vascular protective activity, and these were preliminarily screened as quality control markers. The present study provided a novel idea for the study of the pharmacodynamic material basis and quality evaluation of QishenYiqi dripping pills.  相似文献   

7.
We investigated a strategy for the chemotaxonomy study of Chrysobalanus icaco Linnaeus (Chrysobalanaceae) based on ultra‐high performance liquid chromatography coupled with diode array detection fingerprint in combination with multivariate analysis. Two models using principal component analysis and partial least squares discriminant analysis were developed, and the samples could be successfully classified into two classes: Class 1 (red morphotype) and Class 2 (white and black morphotypes). Furthermore, ultra‐high performance liquid chromatography coupled with diode array and electrospray ionization tandem mass spectrometry was used to identify the main compounds responsible for class separation. The partial least squares discriminant analysis model accurately classified the C. icaco samples using an external validation subset with prediction ability of 100% and revealed the existence of two chemotypes. The most important finding obtained in this study is that the three morphotypes distinguished by the mature fruit color (white, red, and black) are not all phytoequivalent to each other.  相似文献   

8.
An ultra‐high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry method coupled with principal component analysis was developed and applied to the identification of Cornu Antelopis, Cornu Bubali, Cornu Naemorhedi, and Cornu Bovis. The data obtained from the trypsin‐digested samples were subjected to principal component analysis to classify these four cornua. Additionally, marker peptides of the cornua were determined by orthogonal partial least‐squares discriminant analysis, and fragmentation tandem mass spectra of these marker peptides were evaluated. The results from this study indicate that the proposed method is reliable, and it has been successfully applied to the identification of variants of cornua commonly used in traditional Chinese medicine.  相似文献   

9.
In this study, complex substances such as Mint (Mentha haplocalyx Briq.) samples from different growing regions in China were analyzed for phenolic compounds by high‐performance liquid chromatography with diode array detection and for the volatile aroma compounds by gas chromatography with mass spectrometry. Chemometrics methods, e.g. principal component analysis, back‐propagation artificial neural networks, and partial least squares discriminant analysis, were applied to resolve complex chromatographic profiles of Mint samples. A total of 49 aroma components and 23 phenolic compounds were identified in 79 Mint samples. Principal component analysis score plots from gas chromatography with mass spectrometry and high‐performance liquid chromatography with diode array detection data sets showed a clear distinction among Mint from three different regions in China. Classification results showed that satisfactory performance of prediction ability for back‐propagation artificial neural networks and partial least squares discriminant analysis. The major compounds that contributed to the discrimination were chlorogenic acid, unknown 3, kaempherol 7‐O‐rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown 6 and pebrellin in Mint according to regression coefficients of the partial least squares discriminant analysis model. This study indicated that the proposed strategy could provide a simple and rapid technique to distinguish clearly complex profiles from samples such as Mint.  相似文献   

10.
A simple and green sodium dodecyl sulfate‐synergistic microwave‐assisted extraction method was developed to extract and determine the iridoids, phenylpropanoids, and lignans in Eucommiae Cortex followed by ultra‐high‐performance liquid chromatography with photodiode array detection. The biodegradable solution (sodium dodecyl sulfate) was used as a promising alternative to organic solvents. The response surface methodology provided the optimum extraction conditions (2 mg/mL sodium dodecyl sulfate, 1100 W microwave power, and 6 min extraction time). The recoveries of three types of components ranged from 95.0 to 105% (RSDs < 5%). The intra‐ and inter‐day precision and accuracy were less than 3.40% and within the range of 97.1‐105%, respectively. Compared with other extraction methods, this newly established method was more efficient and environmental friendly. The results demonstrated that sodium dodecyl sulfate‐synergistic microwave‐assisted extraction followed by ultra‐high‐performance liquid chromatography with photodiode array method was applicable for the simultaneous extraction and determination of these three types of compounds for quality evaluation of Eucommiae Cortex.  相似文献   

11.
In this work, a smart chemometrics‐enhanced strategy, high‐performance liquid chromatography, and diode array detection coupled with second‐order calibration method based on alternating trilinear decomposition algorithm was proposed to simultaneously quantify 12 polyphenols in different kinds of apple peel and pulp samples. The proposed strategy proved to be a powerful tool to solve the problems of coelution, unknown interferences, and chromatographic shifts in the process of high‐performance liquid chromatography analysis, making it possible for the determination of 12 polyphenols in complex apple matrices within 10 min under simple conditions of elution. The average recoveries with standard deviations, and figures of merit including sensitivity, selectivity, limit of detection, and limit of quantitation were calculated to validate the accuracy of the proposed method. Compared to the quantitative analysis results from the classic high‐performance liquid chromatography method, the statistical and graphical analysis showed that our proposed strategy obtained more reliable results. All results indicated that our proposed method used in the quantitative analysis of apple polyphenols was an accurate, fast, universal, simple, and green one, and it was expected to be developed as an attractive alternative method for simultaneous determination of multitargeted analytes in complex matrices.  相似文献   

12.
A rapid and effective method was developed for the qualitative and quantitative analysis of the major chemical constituents in Angelicae pubescentis radix by ultra high performance liquid chromatography with photodiode array detection and quadrupole time‐of‐flight tandem mass spectrometry. The chromatographic separation was achieved on an ACQUITY UHPLC BEH C18 column (2.1 × 100 mm, 1.7 μm). Nine phenolic acids, 30 coumarins, bisabolangelone, and adenosine were identified by quadrupole time‐of‐flight tandem mass spectrometry. All calibration curves exhibited good linearity (r > 0.9996) within the linear ranges. The relative standard deviation calculated for intraday and interday precision, stability, and accuracy were <5%. The mean recovery ranged from 95.8 to 106%. The overall limits of detection and quantification were 0.025–0.160 and 0.100–0.560 μg/mL, respectively. Discriminant analysis was investigated as a method for evaluating the quality of the samples with 100% correction in their classification. The results demonstrated that the developed method could successfully be used to differentiate samples from different regions and could be a helpful tool for detection and confirmation of the quality of traditional Chinese medicines.  相似文献   

13.
High‐performance liquid chromatography coupled with photodiode array detection has been extensively applied in many fields and the peaks among the analyzed samples can be shifted due to the variations of instrumental and experimental conditions. In multivariate analysis, retention time alignment is an important pretreatment step. Hence, the shifted peaks in high‐performance liquid chromatography coupled with photodiode array detection three‐dimensional spectra should be aligned for further analysis. Being motivated by this purpose, the interval correlated shifting method combined with the proposed data arrangement methods are recommended and employed on high‐performance liquid chromatography coupled with photodiode array detection data as a demonstration. We validate the alignment performance of the proposed method through comparison the consistency of the retention time before and after alignment. The obtained results demonstrated that the proposed method is capable of successful aligning the employed data. Additionally, the interval correlated shifting method combined with the data arrangement modes is implemented in an easy‐to‐use graphical user interface environment and so can be operated easily by users not familiar with programming languages.  相似文献   

14.
Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non‐small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium‐/long‐chain acylcarnitines, for example, cis‐3,4‐methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non‐small cell lung carcinoma.  相似文献   

15.
An industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with response surface methodology was explored to determine L‐epicatechin, typhaneoside, isorhamnetin‐3‐O‐neohespeidoside, naringenin, kaempferol, and isorhamnetin in Pollen typhae by ultra‐high performance liquid chromatography connected to a photodiode array detection. Several variables were optimized in detail, including mesh number of sieve, type of adsorbent, mass ratio of sample to adsorbent, grinding time, methanol concentration, and elution volume. Central composite design was applied to optimize the best conditions for the maximum yields of the total flavonoids. The results displayed a good linear relationship (R > 0.9992) and the recoveries ranged from 92.9 to 103% (RSD < 4.53%) of the six flavonoids. The optimal method with high efficiency and low consumption was obviously better than heating reflux and ultrasonic extraction. It was proven that the developed industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with simple ultra‐high performance liquid chromatography method could be a rapid and efficient tool for extraction and determination of flavonoids in natural products.  相似文献   

16.
An ultra high performance liquid chromatography with photodiode array detection method is developed for the simultaneous quantitative determination of five water‐soluble compounds including danshensu, protocatechualdehyde, rosmarinic acid, salvianolic acid B, and salvianolic acid A in Salvia miltiorrhiza Bge. samples. Through method optimization, the five compounds all expressed good linearity (R2 > 0.9990) in a wide concentration range together with satisfactory accuracy, precision, and stability. Moreover, through qualitative analysis of the chemical fingerprint combined with similarity analysis, hierarchical cluster analysis, principle component analysis, and partial least‐squares discriminate analysis, we determined that the 13 batches of Salvia miltiorrhiza Bge. were similar in internal quality and the differences resulted from various cultivation environments, recovery elements, and others. Seen from the results of hierarchical cluster analysis and principle component analysis, the classification of 13 batches was in accordance, and partial least‐squares discriminate analysis technique was more suitable than the principle component analysis model to provide a distinct classification of test samples on the basis of their different components. Moreover, a permutation test verified the rationality of partial least‐squares discriminate analysis and variable importance plot showed that peaks 37 and 38 were the most significant variables in distinguishing the Salvia miltiorrhiza Bge. samples. The idea of the quantitative and qualitative analysis of Salvia miltiorrhiza Bge. was convenient, sensitive, and comprehensive, which could be applied to evaluate the quality of more traditional Chinese medicines.  相似文献   

17.
Sun protection is an important part of our lives. UV filters are widely used to absorb solar radiation in sunscreens. However, excess UV filters constitute persistent groups of organic micropollutants present in the environment. An environmentally friendly ionic‐liquid‐based up‐and‐down shaker‐assisted dispersive liquid?liquid microextraction device combined with ultra‐performance liquid chromatography coupled with photodiode‐array detection has been developed to preconcentrate three UV filters (benzophenone, 2‐hydroxy‐4‐methoxybenzophenone, 2,2′‐dihydroxy‐4‐methoxybenzophenone) from field water samples. In this method, the optimal conditions for the proposed extraction method were: 40 μL [C8MIM][PF6] as extraction solvent and 200 μL methanol as disperser solvent were used to extract the UV filters. After up‐and‐down shaking for 3 min, the aqueous solution was centrifuged at 5000 rpm speed, then using microtube to collect the settled extraction solvent and using ultra‐performance liquid chromatography for further analysis. Quantification results indicated that the linear range was 2–1000 ng/mL. The LOD of this method was in the range 0.2–1.3 ng/mL with r2 ≥ 0.9993. The relative recovery in studies of different types of field water samples was in the range 92–120%, and the RSD was 2.3–7.1%. The proposed method was also applied to the analysis of field samples.  相似文献   

18.
A simple and rapid ultra‐high‐performance liquid chromatographic (UHPLC) for the simultaneous determination of meropenem and ciprofloxacin in human plasma was developed and validated. All of the analytes were separated in <5 min. A solid‐phase extraction method was applied from sample preparation. Analytical separation was performed on a Poroshell SB C18 column (50 × 2.1 mm, 2.7 μm particle size) with photodiode array (PDA) detection. Meropenem and ciprofloxacin were determined at wavelengths of 300 and 277 nm, respectively. The mobile phase was a mixture of acetonitrile–10 mm ammonium acetate–methanol in gradient elution. The method has been validated for both drugs in gastric surgery for cancer patients. The method showed good linearity with correlation coefficients, r2 = 0.994 for the two drugs, as well as high precision (RSD < 10.5% in each case); accuracy ranged from ?5.8 to +6.0%. The limit of quantitation of the two drugs was established at 0.02 and 0.01 μg/mL, respectively. Meropenem, ciprofloxacin and the internal standard were extracted from human plasma with a mean recovery ranging from 92.5 to 98.6%. The method was applied to quantify the drugs dosage in complicated gastric surgery patients.  相似文献   

19.
A simple method has been developed by combining high‐performance liquid chromatography with diode array detection with the alternating trilinear decomposition method for simultaneous determination of four tyrosine kinase inhibitors in different human plasma samples. Chromatographic separation of the analytes was performed on a reversed‐phase column with methanol (65%, v/v, A) and 0.1% aqueous solution of formic acid (35%, v/v, B). Analysis time was 5.0 min per run and analytes could be completely eluted within 2.8??3.8 min. The calibration concentration ranges of vandetanib, pazopanib, afatinib and dasatinib were designed as 0.50–6.10, 0.50–6.10, 0.70–7.00 and 0.70–7.00 μg·mL?1, respectively. The intra‐ and inter‐day RSDs ranged between 0.1 and 8.9%. Quantitative information could be extracted from the unsegregated interferences of different human plasma samples with the aid of the “second‐order advantage” of three‐way (second‐order) calibration methods. All results demonstrated that the proposed method for direct quantitative analysis of four tyrosine kinase inhibitors in different complex systems possessed good characteristics of rapidity, sensitivity and efficiency, and it is expected to be an attractive choice in the fast analysis of clinical samples.  相似文献   

20.
This study was designed to classify and identify closely related thistle species in the genus Cirsium, as well as Carduus and Cephalonoplos species, which are also thistles. The comprehensive and untargeted metabolite profiles of nine Korean thistles were determined using ultra high performance liquid chromatography combined with hybrid quadrupole time‐of‐flight mass spectrometry. The difference in metabolite profiles among species was explored using principal component analysis and hierarchical clustering analysis. The significantly different metabolites (Bonferroni‐corrected P‐value < 0.001) were used to construct a partial least squares discriminant analysis model to predict the species of thistle. Nine species were successfully classified using a partial least squares discriminant analysis model and confirmed using a cross‐validation method. Species with similar features were grouped based on unique patterns in variable clusters. The present study suggests that liquid chromatography with quadrupole time‐of‐flight mass spectrometry untargeted metabolomic profiling with chemometric analysis is an efficient and powerful tool for discriminating between different species of medicinal herbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号