共查询到20条相似文献,搜索用时 15 毫秒
1.
Dapeng Liang Wenjie Liu Rabia Raza Yu Bai Huwei Liu 《Journal of separation science》2019,42(1):330-341
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis. 相似文献
2.
Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid‐phase dispersion extraction 下载免费PDF全文
Zuofu Wei Youzhi Pan Lu Li Yuyang Huang Xiaolin Qi Meng Luo Yuangang Zu Yujie Fu 《Journal of separation science》2014,37(21):3045-3051
A method based on matrix solid‐phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid‐phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid‐phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound‐assisted extraction, the proposed matrix solid‐phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. 相似文献
3.
Jingyun Liang Yanjie Dong Xuexia Yuan Lixia Fan Shancang Zhao Lei Wang 《Journal of separation science》2019,42(13):2191-2201
A dispersive solid‐phase extraction coupled with ultra high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of T‐2 toxin, penicillic acid, fumonisins B1, B2, and B3, aflatoxins B1, B2, G1, and G2, ochratoxin A, deoxynivalenol, 3‐acetyldeoxynivalenol, 15‐acetyldeoxynivalenol, and zearalenone in chestnut samples. The method was used to analyze 136 samples obtained from Shandong province in China. The mycotoxins were extracted using a dispersive solid‐phase extraction method and cleaned using an improved quick, easy, cheap, effective, rugged, and safe approach. The mycotoxins were then detected using a triple‐quadrupole mass spectrometer. The limits of detection and quantification ranged from 0.02 to 1 and 0.1 to 2 μg/kg, respectively. The recovery rates ranged from 74.2 to 109.5%, with relative standard deviations below 15%. A total of 71 samples were contaminated with seven mycotoxins at concentrations ranging from 1.2 to 105.5 μg/kg, with a number of samples exceeding the maximum limits set in the European regulations for mycotoxins in unprocessed chestnuts. 相似文献
4.
Cheng Li Anxiang Lu Jihua Wang Jie Li Hua Ping Yunxia Luan Jiayi Chen Xuejiao Ha 《Journal of separation science》2014,37(24):3714-3721
A fast and novel analytical method was developed for the determination of trace levels of sulfonylurea herbicides in water and soil samples. Graphene was used as a sorbent for extraction, and ultra high performance liquid chromatography with tandem mass spectrometry was used for quantification. Five sulfonylurea herbicides were preconcentrated from water samples using a graphene‐loaded packed cartridge, while extraction from soil samples was performed in a single step using graphene‐supported matrix solid‐phase dispersion. Under the optimized conditions, the calibration plots were linear in the range between 5 and 1000 ng/L for water samples, and between 1 and 200 ng/g for soil samples. All correlation coefficients (R) were >0.99. The limits of detection for water and soil samples were 0.28–0.53 ng/L and 0.08–0.26 ng/g, respectively. This method was successfully applied to the analysis of spiked samples of environmental water and soil, with recoveries ranging from 84.2–109.3 and 86.12–103.2%, respectively, all with relative standard deviations of <10%. 相似文献
5.
《Journal of separation science》2018,41(10):2151-2160
In recent years, the use of human saliva for diagnostic purposes has evoked great interest. Thus, the aim of this study was to choose the optimal solid‐phase extraction cartridges and extraction solvents for the quantitation of venlafaxine in saliva. Blank saliva samples spiked with venlafaxine concentrations between 25 and 750 ng/mL were analyzed using five solid‐phase extraction columns (C18, C8, Strata‐X, Strata‐X‐C, and Strata‐X‐AW), washing solvents (deionized water, phosphate buffer at pH 5.5, and their mixtures with methanol), and elution solvents (methanol, acetonitrile, and their mixtures with 25% ammonia). A high‐performance liquid chromatography system was used to quantify venlafaxine in saliva. The results of this study revealed that nine of 25 procedures enabled quantitation of venlafaxine in the tested concentration range. The procedure that used a C18 cartridge, a mixture of methanol and deionized water as the washing solvent, and methanol as the elution solvent was the most effective and allowed quantitation of all venlafaxine concentrations with an acceptable recovery. In contrast, the Strata‐X‐C cartridge could not detect venlafaxine at the lowest concentration (25 ng/mL). The data acquired from the high‐performance liquid chromatography system were confirmed by a multivariate data analysis. 相似文献
6.
Jose María Moreno Aneta Wojnicz Juan Luis Steegman Maria F. Cano‐Abad Ana Ruiz‐Nuño 《Biomedical chromatography : BMC》2013,27(4):502-508
We have developed a method of liquid chromatography in tandem with mass spectrometry to monitor therapeutic levels of imatinib in plasma, a selective inhibitor of protein tyrosine kinase. After solid‐phase extraction of plasma samples, imatinib and its internal standard, imatinib‐D8, were eluted with Zorbax SB‐C18 at 60 °C, under isocratic conditions through a mobile phase consisting of 4 mm ammonium formate, pH: 3.2 (solution A) and acetonitrile solution B. The flow rate was 0.8 mL/min with 55% solution A + 45% solution B. Imatinib was detected and quantified by mass spectrometry with electrospray ionization operating in selected‐reaction monitoring mode. The calibration curve was linear in the range 10–5000 ng/mL, the lower limit of quantitation being 10 ng/mL. The method was validated according to the recommendations of the Food and Drug Administration, including tests of matrix effect (bias < 10%) and recovery efficiency (>80 and <120%). The method is precise (coefficient of variance intra‐day <2% and inter‐day <7%), accurate (95–108%), sensitive and specific. It is a simple method with very fast recording time (1.2 min) that is applicable to clinical practice. This will permit improvement of the pharmacological treatment of patients. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Guomin Wang Jian Zhao Tao Peng Dongdong Chen Cunxian Xi Xiong Wang Jinzhong Zhang 《Journal of separation science》2013,36(4):796-802
Matrix effects in determination of three β‐receptor agonists including salbutamol (SAL), clenbuterol, and terbutaline in animal‐derived foodstuffs were studied by ultra‐performance LC‐MS/MS with cleanup of immunoaffinity SPE column (IAC). Some animal tissue samples including pig liver, swine muscle, and fish muscle were hydrolyzed by the mixed enzyme solution or HCl solution, and the cleanup efficiencies with SAL IAC, MCX SPE column, and C18‐SCX tandem columns were examined and compared by using spiked experiments. The results showed that the matrix effects in the determination of SAL and terbutaline can be eliminated with SAL IAC cleanup, and the average recoveries of SAL were 77.4~81.5%, 79.0~80.3%, and 85.0~87.2% in pig liver, swine muscle, and fish muscle, respectively. The decision limit (ccα) and detection capability (ccβ) for SAL in pig liver were 0.02 and 0.05 μg/kg, respectively. 相似文献
8.
《Journal of separation science》2017,40(8):1644-1650
Microcystins (MCs), produced by freshwater cyanobacteria, can be serious water pollutants, so it is important to monitor their concentration in drinking water. We have developed a method for rapid and accurate determination of microcystin levels in environmental water, using magnetic solid‐phase extraction and high‐performance liquid chromatography with UV detection. The magnetic composite material, which was combined with cetylpyridinium chloride, was prepared by hydrothermal synthesis. The optimal extraction of microcystins in water sample was achieved by optimizing the amount of adsorbent, time of adsorption, ratio of eluting solvent, and volume of eluent. Under the optimal conditions, the limit of detection of MC‐LR was 0.001 μg/L, and the limit of quantification was 0.0028 μg/L. The limit of detection of MC‐RR was 0.001 μg/L, and the limit of quantification was 0.003 μg/L. These values are far lower than those established by the International Health Organization for the maximum concentration of microcystins in drinking water. The magnetic solid‐phase extraction adsorbent used in this method has the advantages of simple preparation, low price, and easy solid–liquid separation, and it can be used for the rapid and sensitive monitoring of trace microcystins in environmental water samples. 相似文献
9.
《Journal of separation science》2017,40(9):1966-1973
We utilized ultra‐high performance liquid chromatography with tandem mass spectrometry and dispersive solid‐phase extraction to develop a new method for the detection of nine analytes (scopolamine, cephaeline, strychnine, hyoscyamine, brucine, hydrastine, ajmalicine, colchicine, and oleandrin) in herbal cosmetics. Acetonitrile/water and 2‐propylaminoethylamine were used to disperse and purify during the dispersive solid‐phase extraction step. The analytes were separated by a Waters UPLC HSS T3 column and detected through electrospray ionization source in the positive mode with multi‐reaction monitoring conditions. Under the optimal conditions, the calibration curves were linear in the range of 0.2–100.0 μg/L with the correlation coefficients higher than 0.995. The method limit of quantitation (S/N = 10) were 5.0 μg/kg for oleandrin and 1.0 μg/kg for the other eight alkaloids. The mean recoveries at three spiked concentration levels of 1.0–10.0 μg/kg were in the range of 86.9–116.5% with the intra‐day relative standard deviations (n = 6) ranging from 2.4 to 8.8%, and inter‐day relative standard deviations ranging from 2.7 to 5.7%. This method is accurate, simple and rapid, and has been applied to the quality supervision of herbal cosmetics in Guangzhou. 相似文献
10.
Solid‐phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X‐ray contrast media in environmental water samples 下载免费PDF全文
A highly sensitive method based on solid‐phase extraction and ultra high performance liquid chromatography with electrospray tandem mass spectrometry has been developed for simultaneous determination of five iodinated X‐ray contrast media in environmental water samples. Various solid‐phase extraction cartridges have been evaluated and a combination of LiChrolute EN and ENVI‐Carb solid phase extraction cartridges was selected for sample enrichment. The method was comprehensively validated on ground water, tap water, surface water, drinking water, and waste water by the conventional procedures: linearity, method detection limits, accuracy and precision, matrix effects. Good linearity (R2 > 0.999), low detection limits (0.4–8.1 ng/L), satisfactory recoveries (55.1–109.5%) and precision (0.8–10.0% for intra‐day precisions and 0.6–16.5% for inter‐day precisions) were obtained for all the target compounds. Iopamidol, iohexol, and diatrizoate in some matrices were affected by matrix effects, which were slightly eased by using the isotope‐labeled internal standard. The developed method was successfully applied for real samples collected in Shanghai, China, with detected concentrations up to 2200 ± 200 and 9000 ± 1000 ng/L for iohexol and iopamidol, respectively. 相似文献
11.
Multiresidue analysis of quinolones in water by ultra‐high perfomance liquid chromatography with tandem mass spectrometry using a simple and effective sample treatment 下载免费PDF全文
Manuel Lombardo‐Agüí Carmen Cruces‐Blanco Ana M. García‐Campaña Laura Gámiz‐Gracia 《Journal of separation science》2014,37(16):2145-2152
A rapid and simple analytical method has been developed for the determination of 19 quinolones in environmental water samples using ultra high performance liquid chromatography with tandem mass spectrometry. Chromatographic and detection conditions have been optimized and the separation was achieved in less than 4 min. The separation was carried out using a new‐generation column filled with superficially porous particles, resulting in lower backpressure and better resolution than totally porous particle columns. The quinolones were detected by electrospray ionization in positive mode using multiple‐reaction monitoring mode for acquisition. A sample treatment based on liquid–liquid extraction and phase separation via salting‐out was employed to achieve a fast and simple extraction that enables the multiresidue analysis. The method has been validated for an environmental well water sample from a mountain area. Very low limits of detection (between 10 and 90 ng/L) with relative standard deviations lower than 16.5% and recoveries higher than 73% were achieved. Moreover, well waters from different origins (mountain and coast areas and irrigated land) have been evaluated and similar results were obtained. 相似文献
12.
Zhimin Luo Guoning Chen Xuan Li Lu Wang Hua Shu Xia Cui Chun Chang Aiguo Zeng Qiang Fu 《Journal of separation science》2019,42(21):3352-3362
Pyrrolizidine alkaloids are the most widely distributed natural toxins, and pyrrolizidine alkaloid‐containing herbal medicines are probably the most common poisonous plants affecting humans. We reported pyrrolizidine alkaloid‐molecularly imprinted polymer solid‐phase microextraction for the selective adsorption of toxic pyrrolizidine alkaloids from herbal medicine. A sulfonic compound, sodium allylsulfonate, was chosen as the functional monomer to interact with pyrrolizidine alkaloids through strong ionic interaction. To avoid template leakage and for the aim of cost saving, a relatively cheap dummy template was used for the fabrication of molecularly imprinted polymer‐solid‐phase microextraction fibers. The obtained fibers showed selective adsorption ability for four pyrrolizidine alkaloids, including europine, echimidine, lasiocarpine, and heliotrine. The extraction parameters, such as extraction time, extraction temperature, shaking speed, elution solvent and elution time, were optimized. Then ultra high performance liquid chromatography with mass spectrometry coupled with molecularly imprinted polymer‐solid‐phase microextraction method was developed for the fast and efficient analysis of four pyrrolizidine alkaloids from the model herbal plant Farfarae Flos. The established method was validated and exhibited satisfactory accuracy and precision. The present method provides an innovative and fast analytical strategy for the determination of trace toxic pyrrolizidine alkaloids in complicated samples. 相似文献
13.
《Journal of separation science》2018,41(16):3258-3266
A new method named graphene‐coated magnetic‐sheet solid‐phase extraction based on a magnetic three‐dimensional graphene sorbent was developed for the extraction of aflatoxins prior to high‐performance liquid chromatography with fluorescence detection. The use of a perforated magnetic‐sheet for fixing the magnetic nanoparticles is a new feature of the method. Hence, the adsorbent particles can be separated from sample solution without using an external magnetic field. This made the procedure very simple and easy to operate so that all steps of the extraction process (sample loading, washing, and desorption) were carried out continuously using two lab‐made syringe pumps. The factors affecting the performance of extraction procedure such as the extraction solvent, adsorbent dose, sample loading flow rate, ionic strength, pH, and desorption parameters were investigated and optimized. Under the optimal conditions, the obtained enrichment factors and limits of detection were in the range of 205–236 and 0.09–0.15 μg/kg, respectively. The relative standard deviations were <3.4 and 7.5% for the intraday (n = 6) and interday (n = 4) precisions, respectively. The developed method was successfully applied to determine aflatoxins B1, B2, G1, and G2 in different soy‐based food samples. 相似文献
14.
Junxue Wu Shenwei Zhi Chunhong Jia Xinghai Li Xiaodan Zhu Ercheng Zhao 《Journal of separation science》2019,42(24):3688-3696
In this study, a simple and accurate sample preparation method based on dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction has been developed for the determination of seven novel succinate dehydrogenase inhibitor fungicides (isopyrazam, fluopyram, pydiflumetofen, boscalid, penthiopyrad, fluxapyroxad, and thifluzamide) in watermelon. The watermelon samples were extracted with acetonitrile, cleaned up by dispersive solid‐phase extraction procedure using primary secondary amine, extracted and concentrated by the dispersive liquid‐liquid microextraction procedure with 1,1,2,2‐tetrachloroethane, and then analyzed by ultra high performance liquid chromatography with tandem mass spectrometry. The main experimental factors affecting the performance of dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction procedure on extraction efficiency were investigated. The proposed method had a good linearity in the range of 0.1–100 µg/kg with correlation coefficients (r) of 0.9979–0.9999. The limit of quantification of seven fungicides was 0.1 µg/kg in the method. The fortified recoveries of seven succinate dehydrogenase inhibitor fungicides at three levels ranged from 72.0 to 111.6% with relative standard deviations of 3.4–14.1% (n = 5). The proposed method was successfully used for the rapid determination of seven succinate dehydrogenase inhibitor fungicides in watermelon. 相似文献
15.
Tetracyclines abuse has frequently occurred in aquaculture against bacteria, rickettsiae, spirochetes, and mycoplasmas. In this study, a high‐throughput sample preparation method was developed using 96‐well plate solid‐phase extraction (p‐SPE) and the extract was analyzed by ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS). The experimental conditions were optimized such that the pH is 4, the eluting solvent is methanol (2 mL), and the sorbent is hydrophilic‐lipophilic balance (HLB) microsphere. The whole protocol was validated, and it showed that the tetracyclines were linear with correlation coefficients ≥ 0.9990, precision and accuracy (RSD%) in 3.9–6.1%, and mean recoveries of 88.6–103.6%. To exhibit the potential of 96‐well p‐SPE as a routine tool for inspection and quarantine, fresh aquatic samples were tested, and among which positive samples were observed. This method was demonstrated to be promising for the purification and enrichment of tetracyclines with reduced time and labor, and indeed practically and particularly suitable for widespread tetracyclines analysis. 相似文献
16.
M. E. Torres Padrón Z. Sosa Ferrera J. J. Santana Rodríguez 《Biomedical chromatography : BMC》2009,23(11):1175-1185
A residue analytical method combining solid‐phase microextraction (SPME) with external micellar desorption (MD) and high‐performance liquid chromatography with diode array detector (HPLC‐DAD) has been developed and validated for the simultaneous determination of six pharmaceutical compounds, belonging to various therapeutic categories in water samples. Target compounds include antiinflamatory drugs (ibuprofen, ketoprofen and naproxen), an analgesic (phenazone), a lipid regulator (bezafibrate) and an antiepileptic (carbamazepine). A detailed study of the experimental conditions of extraction and desorption with different surfactants was performed in order to obtain the best results during instrumental analysis. Of the different fibers and surfactants investigated, 65 µm polydimethysiloxane‐divinilbenzene (PDMS‐DVB) fiber and polyoxyethylene 10 lauryl ether (POLE) and polyoxyethylene 6 lauryl ether (C12E6) as desorbing agents produced the optimal response to pharmaceutical residues. Recoveries obtained were generally higher than 80% and the variability of the method was below 16% for all compounds in both surfactants. Method detection limits were 0.05–12 ng mL?1 for POLE and 0.1–5 ng mL?1 for C12E6. The developed method was compared using external desorption with organic solvent and it was successfully applied to the determination of these pharmaceutical compounds in water samples from different origin. Solid‐phase microextraction with micellar desorption (SPME‐MD) represents a new approach for the extraction of different pharmaceutical compounds in natural waters because it combines shorter handling time, better efficiency, safety and more environmentally friendly process than the traditional methods. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
Ultrapreconcentration and determination of organophosphorus pesticides in water by solid‐phase extraction combined with dispersive liquid–liquid microextraction and high‐performance liquid chromatography 下载免费PDF全文
Junhua Chen Guangming Zhou Yongli Deng Hongmei Cheng Jie Shen Yi Gao Guilong Peng 《Journal of separation science》2016,39(2):272-278
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples. 相似文献
18.
3‐D graphene‐supported mesoporous SiO2@Fe3O4 composites for the analysis of pesticides in aqueous samples by magnetic solid‐phase extraction with high‐performance liquid chromatography 下载免费PDF全文
Xuemei Wang Huan Wang Muxin Lu Xiaomin Ma Pengfei Huang Xiaoquan Lu Xinzhen Du 《Journal of separation science》2016,39(9):1734-1741
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained. 相似文献
19.
Functionalized nanoparticles based solid‐phase membrane micro‐tip extraction and high‐performance liquid chromatography analyses of vitamin B complex in human plasma 下载免费PDF全文
Imran Ali Umma Kulsum Zeid A. AL‐Othman Abdulrahman Alwarthan Kishwar Saleem 《Journal of separation science》2016,39(14):2678-2688
Iron nanoparticles were prepared by a green method following functionalization using 1‐butyl‐3‐methylimidazolium bromide. 1‐Butyl‐3‐methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X‐ray fluorescence, X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid‐phase membrane micro‐tip extraction to separate vitamin B complex from plasma before high‐performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high‐performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57–39.47, 1.12–6.00 and 1.84–26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices. 相似文献