首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
马慧  宋少江  刘菲菲  张艳  彭缨 《色谱》2014,32(7):762-766
建立了高效液相色谱-串联质谱法(HPLC-MS/MS)用于测定辽东楤木不同部位中的楤木皂苷Ⅱ、楤木皂苷Ⅳ、楤木皂苷Ⅴ、楤木皂苷Ⅹ和楤木叶皂苷Ⅱ的含量,并比较了楤木不同部位中上述5种皂苷的含量差异。以Alltima C18柱(250 mm×4.6 mm,5 μm)为分析柱,以乙腈和0.1%(体积分数)甲酸水溶液为流动相,梯度洗脱,流速为0.8 mL/min。在电喷雾正离子多反应监测(MRM)模式下进行检测。结果表明该方法中楤木皂苷Ⅱ、楤木皂苷Ⅳ、楤木皂苷Ⅴ、楤木皂苷Ⅹ和楤木叶皂苷Ⅱ分别在0.17~108 μg/L、0.53~329 μg/L、0.77~480 μg/L、0.77~480 μg/L和0.82~510 μg/L范围内线性关系良好,相关系数(r2)均大于0.999,提取回收率为99.0%~100.2%。该方法简单、快速、灵敏,可用于测定辽东楤木药材不同部位中的皂苷类成分的含量。测定结果发现楤木不同部位中上述5种皂苷总量多少的顺序为根皮 >叶 >种子 >芽。  相似文献   

2.
This study aimed to develop and validate a simple and sensitive ultra high performance liquid chromatography tandem mass spectrometry method for the simultaneous determination of sophoraflavanone G and kurarinone in rat plasma by using rutin as the internal standard. Then, the developed method was applied to investigate the pharmacokinetics of sophoraflavanone G and kurarinone in rats after dosing the flavonoid extract from Sophora flavescens. Plasma samples were processed using a liquid–liquid extraction procedure with ethyl acetate. The analysis was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with an electrospray ionization source in negative ionization mode. Quantitative ion transitions of m/z 423.2→161.2, 437.2→161.1, and 609.3→300.3 were monitored for sophoraflavanone G, kurarinone, and rutin, respectively. The calibration curves of the two analytes exhibited good linearity (r2>0.9923) over the range of 0.1–200 ng/mL for sophoraflavanone G and 0.1–1000 ng/mL for kurarinone. Relative standard deviations were less than 13.2% for the intra‐ and inter‐day precisions and no more than 12.6% for the recovery, showing good precision and satisfactory accuracy of the developed method. The validated method was successfully applied to the pharmacokinetic study of sophoraflavanone G and kurarinone after a single intravenous (25 mg/kg) and oral (500 mg/kg) administration of the flavonoid extract from S. flavescens, and the absolute bioavailability for sophoraflavanone G and kurarinone was about 36 and 17%, respectively.  相似文献   

3.
In this study, simple ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass tandem mass spectrometry is used to characterize the absorbed components in rat plasma after the oral administration of saponins from the leaves of Panax notoginseng. Seventeen prototype compounds are structurally characterized. Furthermore, a simple and sensitive liquid chromatography with tandem mass spectrometry method is also used for the simultaneous determination of notoginsenoside Fc, ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb3, ginsenoside Rd, and notoginsenoside Fe in rat plasma within 5 min. After n‐butanol mediated liquid–liquid extraction, all analytes were separated on a C18 column and monitored in negative ion mode. Linearity, sensitivity, intra‐ and inter‐assay precision, accuracy, recovery, matrix effect, and stability were all within acceptable ranges. The validated liquid chromatography with tandem mass spectrometry method is successfully applied to the pharmacokinetic study of saponins from the leaves of Panax notoginseng in rats after oral administration. The results suggest that notoginsenoside Fc and ginsenoside Rb3 showed relatively higher exposure compared with other saponins. All saponins showed a long duration in plasma with a t1/2 longer than 15 h, except notoginsenoside Fe (t1/2 = 2.78 h). This study provides important information about the metabolism of saponins from the leaves of Panax notoginseng, which is useful for completely understanding its mechanism of action.  相似文献   

4.
Yunnan Baiyao (YNBY) is one of the best known traditional Chinese medicines. Saponins are considered to be its active components. In this study, an HPLC method was first developed for the simultaneous quantitative analysis of thirteen saponins, including five triterpenoid saponins and eight steroidal saponins, in a series of YNBY preparations, i. e., powder, capsules, aerosol, toothpaste, plaster, and adhesive bandage. The pre‐treatment methods for each dosage form were investigated and optimized. The HPLC separation was performed on a Shim‐pack C18 reversed‐phase column in gradient mode with UV detection at 203 nm. All calibration curves showed good linear regression (r2 ? 0.9981) within the test ranges. Precisions and repeatabilities of the methods were better than 4.22 and 4.78%, respectively. Recoveries were better than 90.5%, even in the analysis of the least abundant saponins in a complex YNBY plaster. HPLC–ESI‐TOF/MS was used for definite identification of compounds in the preparations. This proposed method was successfully applied to quantify the 13 bioactive constituents in 27 commercial samples to evaluate the quality of YNBY preparations. The overall results demonstrate that this method is simple, reliable, and suitable for the quality control of YNBY. Furthermore, the retention behavior of these saponins in reversed‐phase chromatography is described.  相似文献   

5.
Xanthii Fructus is extensively used as an herbal medicine. Ingestion of this herb is associated with severe hepatotoxicity and nephrotoxicity. Atractyloside and carboxyatractyloside are two dominative toxic constituents in Xanthii Fructus. However, their pharmacokinetic study is lacking. In this study, a novel high‐performance liquid chromatography‐tandem mass spectrometry method was developed to simultaneously quantify the rat plasma concentrations of atractyloside and carboxyatractyloside. After protein precipitation, the analytes were chromatographic separated on a ZORBAX Eclipse Plus column (2.1 × 150 mm id, 5 µm) under gradient elute. In the negative electrospray ionization mode, the transitions at m/z 725.3→645.4 for atractyloside, m/z 769.3→689.4 for carboxyatractyloside, and m/z 479.2→121.1 for paeoniflorin (the internal standard) were acquired by multiple reaction monitoring. This analytical method showed good linearity over 1–500 ng/mL for atractyloside and 2–500 ng/mL for carboxyatractyloside with acceptable precision and accuracy. No matrix effect, instability and carryover occurred in the analysis procedure. The extraction recoveries were greater than 85.0%. This method was applied to a preliminary pharmacokinetic study by orally administering Xanthii Fructus extract (9 g/kg) to rats, which was useful to evaluate the role of these two compounds in Xanthii Fructus‐induced toxicity.  相似文献   

6.
α‐Cedrene is a pharmacologically active ingredient isolated from the essential oil of cedar. A selective and sensitive GC–MS/MS method was developed for the quantification of α‐cedrene in rat plasma for the first time. α‐Cedrene was extracted from rat plasma using ethyl acetate at neutral pH. The analytes were determined in selective reaction monitoring mode using MS/MS: m/z 204.3→119.0 for α‐cedrene and m/z 146.0→111.0 for 1,4‐dichlorobenzene (internal standard). The standard curve was linear (r2 ≥ 0.995) over the concentration ranges of 5–800 ng/mL. The lower limit of quantification was 5 ng/mL using 50 μL of rat plasma. The coefficient of variation and relative error for intra‐ and interassays at four quality control levels were 3.1–13.9% and ?4.0–2.6%, respectively. The stability of processing (freeze–thaw, long‐term storage at ?80°C, and short‐term storage at room temperature) and chromatography (reinjection) was shown to be of insignificant effect. The present method was applied successfully to the pharmacokinetic study of α‐cedrene after its intravenous (10 mg/kg) and oral (25 mg/kg) administration in male Sprague‐Dawley rats.  相似文献   

7.
A precise and accurate liquid chromatography–tandem mass spectrometric (LC–MS/MS) bioanalytical method has been developed and validated for the simultaneous quantification of zidebactam (ZID) and cefepime (FEP) in dog plasma. Ceftazidime was used as an internal standard. Protein precipitation method was used as sample preparation approach. The calibration curve obtained was linear (r ≥ 0.99) over the concentration range 0.156–80 μg/mL for ZID and 0.312–160 μg/mL for FEP. The method was validated as per US Food and Drug Administration guidelines and the results met the acceptance criteria. A run time of 3.5 min for each sample made it possible to analyze the maximum number of samples per day. The proposed method was successfully applied for pharmacokinetic study in beagle dogs.  相似文献   

8.
A selective and sensitive ultra‐high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the determination and pharmacokinetic study of (+)‐8‐hydroxypinoresinol‐4’‐O‐β ‐D‐glucopyranoside, prinsepiol‐4‐O‐β‐D‐glucopyranoside, (+)‐pinoresinol‐4,4’‐di‐O‐β‐D‐glucopyranoside, and (−)‐massoniresinol 3α‐O‐β‐D‐glucopyranoside in rat plasma after the oral administration of a Valeriana amurensis extract. The analytes and ethyl 4‐hydroxybenzoate (internal standard) were separated on a Waters ACQUITY UPLC HSS T3 chromatographic column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source operating in negative ionization mode. The linear ranges (ng/mL) of the standard curves were 0.39–154.00, 0.62–244.70, 0.50–198.60, and 0.34–134.50 for (+)‐8‐hydroxypinoresinol‐4’‐O‐β‐D‐glucopyranoside, prinsepiol‐4‐O‐β‐D‐glucopyranoside, (+)‐pinoresinol‐4,4’‐di‐O‐β‐D‐glucopyranoside, and (−)‐massoniresinol 3α‐O‐β‐D‐glucopyranoside, respectively. The inter‐ and intra‐day precisions were less than 11.0%, the accuracies were between −5.9 and 7.7%, and the extraction recoveries of the four analytes were > 81.2% from rat plasma. The method was successfully applied to a pharmacokinetic study of the four analytes after oral administration of a Valeriana amurensis extract to rats. The developed method has the potential for pharmacokinetic analysis and to provide additional information in the clinical application of Valeriana amurensis.  相似文献   

9.
A sensitive high‐performance liquid chromatography–positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of ambrisentan in plasma. The analyte and the internal standard (armodafinil) were extracted from plasma by acetonitrile precipitation and they were separated on a reversed‐phase C18 column with a gradient program. The MS acquisition was performed with multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 379–347 for ambrisentan and m/z 274–167 for the IS. The assay exhibited a linear dynamic range of 1–2000 ng/mL for ambrisentan in plasma. Acceptable precision (<10%) and accuracy (100 ± 8%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify ambrisentan concentrations in a rodent pharmacokinetic study after a single oral administration of ambrisentan at 2.5 mg/kg to rats. Following oral administration the maximum mean concentration in plasma (Cmax; 1197 ± 179 ng/mL) was achieved at 1.0 ± 0.9 h (Tmax), and the area under the curve (AUC) was 6013 ± 997 ng h/mL. Therefore, development of such a simple and sensitive method in rat plasma should translate into a method for ambrisentan in human plasma for clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A simple, rapid and sensitive method using UPLC‐MS/MS was established and validated for simultaneous determination of gelsemine and koumine in rat plasma after oral administration of Gelsemium elegans Benth extract. Plasma was performed with methanol precipitation and berberine was chosen as the internal standard. Plasma samples were separated on an Acquity UPLC® BEH C18 column (3.0 × 50 mm, 1.7 μm) with gradient elution using acetonitrile and 0.1% formic acid aqueous solution as the mobile phase at a flow rate of 0.4 mL/min. Multiple reaction monitoring mode in positive ion mode was utilized for detection. The calibration curves were linear over the range of 0.2–100 ng/mL for gelsemine and 0.1–50 ng/mL for koumine, with the lower limits of quantification 0.2 and 0.1 ng/mL, respectively. The intra‐ and inter‐precision and accuracy were well within the acceptable ranges. The developed method was successfully applied to an in vivo pharmacokinetic study in rat after oral administration of 10 mg/kg Gelsemium elegans Benth extract.  相似文献   

11.
The aim of this study was to develop an analytical method to simultaneously analyze schizandrin, schizandrol B, and gomisin N lignans in human plasma using ultra high performance liquid chromatography with tandem mass spectrometry. The three lignans were separated using a mobile phase of water and acetonitrile containing 0.02% acetic acid equipped with a Kinetex C18 column (2.1 mm × 50 mm, 1.7 μm). This analysis was achieved by multiple reaction monitoring mode in an electrospray interface. The mass transitions were m /z 433.1→384.0 for schizandrin, 398.8→367.8 for schizandrol B, and 400.6→299.8 for gomisin N. Liquid–liquid extraction with methyl tert‐butyl ether was used to obtain the three lignans. The chromatograms showed high resolution, sensitivity, and selectivity with no interference with plasma constituents. The calibration curves for the three lignans in human plasma were 0.05–50 ng/mL and displayed excellent linearity with correlation coefficients greater than 0.99. Precision for all three lignans was within 11.23%. The accuracy was 88.3–99.0% for schizandrin, 90.6–103.4% for schizandrol B, and 90.2–103.5% for gomisin N. The developed simultaneous analytical method satisfied the criteria of international guidance and could be successfully applied to the pharmacokinetic study of three lignans after oral administration of Schisandrae Fructus extract powder to humans.  相似文献   

12.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

13.
Prepared rhubarb, as one of the main processed products of rhubarb, has a good effect on promoting blood circulation. In this paper we describe a rapid, sensitive, and selective ultra‐fast liquid chromatography with tandem mass spectrometry method for simultaneous quantification of five anthraquinones (rhein, aloe‐emodin, chrysophanol, emodin, and physcion) and gallic acid in plasma. Chromatographic separation was performed on an Extend C18 column at the temperature of 30°C using a mobile phase that consisted of 0.1% aqueous formic acid and acetonitrile. Satisfactory linearity, precision, accuracy, extraction recovery, and matrix effect have been achieved. Then, the validated method was successfully applied to a comparative pharmacokinetic study. The results might be helpful for guiding clinical application of prepared rhubarb in the future.  相似文献   

14.
An analytical method based on liquid–liquid extraction has been developed and validated for analysis of agomelatine in human plasma. Fluoxetine was used as an internal standard for agomelatine. A Betasil C18 (4.0 × 100 mm, 5 µm) column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatographic conditions and mass spectrometric detection in the positive ionization mode using an API‐4000 system. The proposed method has been validated with linear range of 0.050–8.000 ng/ml for agomelatine. The intra‐run and inter‐run precision values are within 12.12% and 9.01%, respectively, for agomelatine at the lower limit of quantification level. The overall recovery for agomelatine and fluoxetine was 67.10% and 72.96%, respectively. This validated method was used successfully for analysis of plasma samples from a pharmacokinetic study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A confirmatory method for the simultaneous detection of 29 pharmaceuticals in fish muscle and plasma was developed by using solid‐phase extraction combined with ultra‐high performance liquid chromatography and tandem mass spectrometry. Fish samples were extracted with methanol and enriched using Oasis HLB solid‐phase extraction columns in one step. Twenty‐nine target pharmaceuticals were quantified by the internal standard method and the calibration curves showed good linearity in a wide range with determination coefficients of greater than 0.913. The detection limits of the pharmaceuticals ranged from 0.01 to 2.00 μg/kg (μg/L). The applicability of the method was checked by precision and recovery experiments. The average recoveries of the 29 pharmaceuticals were between 61 and 111%, and all the relative standard deviations were below 25%. Our reported method has been demonstrated to be sensitive, convenient, rapid, and reliable for the simultaneous determination of 29 pharmaceuticals in fish muscle and plasma. Real sample determination showed that 25 and 9 of the 29 compounds were detected in fish muscle and plasma, respectively.  相似文献   

16.
In the present study, a simple, rapid and reliable ultrahigh‐performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m /z ) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10–4167 and 20–8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co‐administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t 1/2 of EPA and reduce T max of EPA. These changes indicated that EPA and PUE might cause drug–drug interactions when co‐administrated.  相似文献   

17.
A selective and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the determination of three triterpenoid saponins isolated from Astragalus membranaceus leaf extract. In this article, a method for simultaneous determination of Huangqiyenin A, Huangqiyenin E, and Huangqiyenin K was established for the first time. The method was successfully applied to the pharmacokinetic study of Astragalus membranaceus leaf extract after oral administration. Liquid–liquid extraction was applied to plasma sample preparation. Multiple reaction monitoring mode with an electrospray ion source in positive electrospray ionization was chosen to quantify the analytes. Chromatographic separation was performed on a Waters HSS T3 column, using gradient elution with a mobile phase composed of acetonitrile and 5 mM ammonium acetate/water. The pharmacokinetic results showed that all three compounds had the characteristics of rapid absorption-slow metabolism trend. The time of maximum plasma concentration of Huangqiyenin A is higher than Huangqiyenin E and Huangqiyenin K. And the maximum plasma concentration of Huangqiyenin A is higher as well. The pharmacokinetic results revealed the pharmacokinetic characteristics of the three analytes in rat plasma, which could provide a helpful reference for the further study of Astragalus membranaceus leaf extract.  相似文献   

18.
Saponin PH, akemisaponins E, saponin PJ1 and scheffoleoside A, the main bioactive triterpene saponins of Chinese traditional medicine Akebia trifoliata, contribute to its diuretic pharmacological activity. Because of interactions of the multiple ingredients in vivo, pharmacokinetic studies of multiple triterpenes after administration of A. trifoliata extract are essential to clarify their pharmacological effects. The purpose of this study was to develop an efficient and sensitive UHPLC–MS/MS method for simultaneous determination of these four triterpene saponins in rat plasma. The biosamples were prepared by liquid–liquid extraction with n‐butanol. The chromatographic separation was performed on a Phenomenex Luna® C18 (150 × 2 mm, 3 μm) with a mobile phase consisting of acetonitrile and water at a flow rate of 0.5 mL/min. The MS/MS system was operated in a negative multiple reaction monitoring mode, and the precursor–product ion transitions were optimized as m/z 941.6 → 471.1 for saponin PH, 941.7 → 471.2 for akemisaponins E, 1089.7 → 601.1 for saponin PJ1, 957.6 → 487.4 for scheffoleoside A and 799.5 → 637.3 for ginsenoside Rg1 (Rg1, internal standard). Method validation parameters (calibration curve linearity, lower limit of detection, recovery, matrix effect, intra‐ and inter‐day precision) were within the acceptable ranges. This is the first reported on the UHPLC–MS/MS detection of saponin PH, akemisaponins E, saponin PJ1 and scheffoleoside A, and applied to a preclinical pharmacokinetic study after oral administration of A. trifoliata extract in rats. This study provides a basis for clinical application and further development of A. trifoliata extract.  相似文献   

19.
A rapid, simple, and accurate procedure was developed and validated for the simultaneous quantification of two anticancer agents, volitinib and gefitinib in rat plasma by high‐performance liquid chromatography with tandem mass spectrometry. The samples were separated by gradient elution from a cyano column within five minutes, using 0.1% formic acid in acetonitrile and 10 mM ammonium formate solution (pH 3.0) as mobile phase. When plasma samples were deproteinated by adding methanol, the analytes in the extract were detected in the positive ionization mode with the tracer ion mass of 346.1 → 145.1 for volitinib and 446.8 → 128.1 for gefitinib. The assay was determined to be valid in the concentration ranges of 2 to 1000 ng/mL for volitinib, and of 1 to 500 ng/mL for gefitinib. Intra‐ and interday accuracies ranged from 88.0 to 104.7% for volitinib and from 90.3 to 101%, for gefitinib. The precision of the assay ranged from 2.1 to 9.71% for volitinib and 2.31 to 12.1% for gefitinib. This method was successfully applied to a pharmacokinetic study of volitinib and gefitinib after the administration of an intravenous or oral dose, indicating that the developed assay can be used to simultaneously determine the concentrations of volitinib and gefitinib in rat plasma.  相似文献   

20.
This study provided a novel and generally applicable method to determine ziyuglycoside I and ziyuglycoside II in rat plasma based on liquid chromatography with tandem mass spectrometry. A single step of liquid–liquid extraction with n‐butanol was utilized, and ginsenoside Rg3 was chosen as internal standard. Final extracts were analyzed based on liquid chromatography with tandem mass spectrometry. Chromatographic separation was achieved using a Thermo Golden C18 column, and the applied gradient elution program allowed for the simultaneous determination of two ziyuglycosides in a one‐step chromatographic separation with a total run time of 10 min. The fully validated methodology for both analytes demonstrated high sensitivity (the lower limit of quantitation was 2.0 ng/mL), good accuracy (% RE ≤ ± 15) and precision (% RSD ≤ 15). The average recoveries of both ziyuglycosides and internal standard were all above 75% and no obvious matrix effect was found. This method was then successfully applied to the preclinical pharmacokinetic studies of ziyuglycoside I and ziyuglycoside II. The presently developed methodology would be useful for the preclinical and clinical pharmacokinetic studies for ziyuglycoside I and ziyuglycoside II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号