首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deep eutectic solvents, as a new type of eco‐friendly solvent, have attracted increasing attention in chemistry for the extraction and separation of target compounds from various samples. To summarize the application of deep eutectic solvents, this review highlights some of the unique properties of deep eutectic solvents and deep‐eutectic‐solvent‐based materials, as well as their applications in extraction and separation. In this paper, the available data and references in this field are reviewed to summarize the application developments of deep eutectic solvents. Based on the development of deep eutectic solvents, the exploitation of new deep eutectic solvents and deep‐eutectic‐solvent‐based materials are expected to diversify into extraction and separation.  相似文献   

2.
Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1‐methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ‐aminopropyltriethoxysilane‐methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid‐phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid‐phase extraction, deep eutectic solvents‐2‐hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples.  相似文献   

3.
A new generation of designer solvents emerged in the last decade as promising green media for multiple applications, including separation processes: the low‐transition‐temperature mixtures (LTTMs). They can be prepared by mixing natural high‐melting‐point starting materials, which form a liquid by hydrogen‐bond interactions. Among them, deep‐eutectic solvents (DESs) were presented as promising alternatives to conventional ionic liquids (ILs). Some limitations of ILs are overcome by LTTMs, which are cheap and easy to prepare from natural and readily available starting materials, biodegradable, and renewable.  相似文献   

4.
丁阳  刘梦格  卜健行  肖雄坤  王炜  盛文兵 《化学通报》2022,85(9):1070-1076,1061
低共熔溶剂(DESs)是一种新型的离子液体(ILs)类似物,与传统有机溶剂、离子液体相比,DESs具有低毒、廉价、易于合成、生物可降解性等特点,因此在众多领域广受关注。近年来DESs在有机合成领域备受关注,被广泛用作合成反应的溶剂、催化剂、反应物等,在有机反应方面存在很大发展空间,本文综述了DESs在有机合成反应中的应用,重点讨论其在氧化还原反应、取代反应、缩合反应、环化反应等方面的研究进展,为其开发应用提供新思路。  相似文献   

5.
In recent years, it has been found that changing ambient conditions (CO2/N2, temperature, pH) can trigger a switchable phase transition of deep eutectic solvents, and such solvents are known as responsive deep eutectic solvents. In this work, we present the development history, properties, and preparation of responsive deep eutectic solvents, followed by the application of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are presented. Importantly, the mechanism of responsive deep eutectic solvents in the extraction of bioactive compounds is discussed. Finally, the challenges and prospects of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are proposed. Responsive deep eutectic solvents are considered green and efficient solvents. Some methods for extraction and separation of bioactive compounds by responsive deep eutectic solvents can increase the possibility of recycling the deep eutectic solvents, and provide higher efficiency in the extraction and separation field. It is hoped that this will provide a reference for the green and sustainable extraction and separation of various bioactive compounds.  相似文献   

6.
Recovery of platinum group metals from spent materials is becoming increasingly relevant due to the high value of these metals and their progressive depletion. In recent years, there is an increased interest in developing alternative and more environmentally benign processes for the recovery of platinum group metals, in line with the increased focus on a sustainable future. To this end, ionic liquids are increasingly investigated as promising candidates that can replace state-of-the-art approaches. Specifically, phosphonium-based ionic liquids have been extensively investigated for the extraction and separation of platinum group metals. In this paper, we present the extraction capacity of several phosphonium-based ionic liquids for platinum group metals from model deep eutectic solvent-based acidic solutions. The most promising candidates, P66614Cl and P66614B2EHP, which exhibited the ability to extract Pt, Pd, and Rh quantitively from a mixed model solution, were additionally evaluated for their capacity to recover these metals from a spent car catalyst previously leached into a choline-based deep eutectic solvent. Specifically, P66614Cl afforded extraction of the three target precious metals from the leachate, while their partial separation from the interfering Al was also achieved since a significant amount (approx. 80%) remained in the leachate.  相似文献   

7.
随着绿色化学的不断发展,如何在分析过程中应用和体现绿色化学特点,避免分析过程对环境产生二次污染及对人员造成危害也得到了关注。开发和使用具有绿色化学特点的溶剂和方法是分析工作者努力的方向之一。在已经出现的新溶剂中,低共熔溶剂(DES)与离子液体(ILs)物理性质相似,并具有环境友好、不可燃、生物降解、价廉、易制备等特点,因而近几年来获得了迅速发展。该文总结了低共熔溶剂的制备、性质及分类,综述了近年来其在萃取和分离中的应用进展。  相似文献   

8.
氯化胆碱/尿素和氯化胆碱/甘油的性质与应用   总被引:1,自引:0,他引:1  
作为绿色溶剂,离子液体在化学和物理学科引起广泛关注.低共融溶剂,如氯化胆碱/尿素和氯化胆碱/甘油,不仅被认为是一类新型的离子液体,还具有价格低廉、环境友好及合成简便等优势.为了促进氯化胆碱/尿素和氯化胆碱/甘油这两种低共融溶剂的应用,本文考察了氯化胆碱/尿素和氯化胆碱/甘油的微观结构、物理化学性质及水分对其物性的影响,并将其与传统离子液体进行了比较.此外,还分析了氯化胆碱/尿素和氯化胆碱/甘油在摩擦学及CO2分离中的潜在应用.已有研究结果表明,氯化胆碱/尿素和氯化胆碱/甘油有希望应用于摩擦学及CO2分离中,但是在大规模工业应用之前依然存在很多不确定性和瓶颈,还需要进一步在其纳米结构、实验测定及模型等方面进行研究.  相似文献   

9.
Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.  相似文献   

10.
Application of new strategies for supramolecular self‐assembly can significantly impact the properties and/or functions of supramolecular polymers. To realize a facial strategy for the development of solvent‐free supramolecular polymers in bulk, “deep eutectic solvents” were employed. Cyclodextrins and natural acids were used to prepare deep eutectic supramolecular polymers ( DESP s). Deep eutectic solvents have special characteristics that endow DESP s with unique macroscopic properties and excellent processability. DESP s exhibit supramolecular adhesion and temperature‐dependent behavior originating from the combined effects of deep eutectic solvents and supramolecular polymerization. Because DESP s are solvent‐free and display interesting macroscopic properties, they have potential as new adaptive materials.  相似文献   

11.
In recent years, hydrophobic deep eutectic solvents as new generation of green solvents have attracted wide attention in liquid microextraction technique. In this article, four hydrophobic deep eutectic solvents composed of trioctylmethylammonium chloride and oleic acid were designed and prepared firstly. Combined with high‐performance liquid chromatography, these deep eutectic solvents were used as an extraction solvent in vortex‐assisted dispersive liquid–liquid microextraction for the selective enrichment and indirect determination of trace nitrite from real water and biological samples. This method is based on the diazotization‐coupling reaction of nitrite with p‐nitroaniline and diphenylamine in acidic water, and then the nitrite is quantified indirectly by measuring the obtained azo compounds. Some factors influencing the extraction efficiency, including the reaction and extraction conditions, were investigated. Under the optimized conditions, the method has a linear range of 1–300 μg/L with a correlation coefficient of 0.9924, limit of detection of 0.2 μg/L, limit of quantitation of 1 μg/L, intraday and interday relative standard deviations of 4.0 and 6.0%. This method was successfully applied in determination of nitrite from three environmental water and two biological samples with the recovery in the range of 90.5–115.2%. In addition, these results were well agreement with those obtained by the conventional Griess method.  相似文献   

12.
Molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids (ILs) were prepared as packing materials for the solid-phase extraction (SPE) of fucoidan and laminarin. The prepared materials were characterized by field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The polymers modified by the deep eutectic solvent prepared by choline chloride and urea had the best extraction efficiencies for fucoidan and laminarin (95.5% and 87.6%, respectively) from marine kelp. The relative standard deviations for intraday and interday determination were less than 4.23%. The molecularly imprinted polymers modified by deep eutectic solvents and ILs showed outstanding applications for SPE and may offer novel sample pretreatment for other analytes.  相似文献   

13.
One of the highlights of green chemistry is the development of techniques and procedures with low environmental impact. In the last years, deep eutectic solvents (DES) have become an important alternative to conventional organic solvents. For a period ionic liquids have provoked remarkable interest, but they have been displaced by DES because they show easier preparation methods, lower prices, many of them are biodegradable and compatible with biological systems. In addition, they show adjustable physicochemical properties, high thermal stability, low volatility and are compatible with water. In this paper is reviewed the state of the art of the use of DES paying special attention to the role of reaction media in organic synthesis.  相似文献   

14.
Ionic liquids with length of alkyl chain and different anions, deep eutectic solvents with choline chloride and 7 different hydrogen bond donors were applied as extraction additives after optimizing the extraction conditions to increase the extraction amounts of rutin, quercetin, and scoparone from Herba Artemisiae Scopariae. The extraction conditions were optimized as follows: refluxing with methanol with a solid/liquid ratio of 1:120 under 60°C for 60 min after changing the different extraction conditions of: extraction methods (dipping, ultrasonic, reflux and soxlet), extraction solvents (methanol, water and ethanol), extraction temperature (30, 40, 50, 60, 70 and 80°C), extraction time (30, 60, 80, 100 and 120 min), extraction ratio of solid to liquid (1:5, 1:10, 1:20, 1:50, 1:100, 1:120 and 1:150). Under these optimal conditions, the best preformed extraction additive among the 7 kinds of ionic liquids and 7 kinds of deep eutectic solvents extraction additives were selected and optimized with its contraction of 0.5mg/mL. Using the most effective extraction additive, [BMIM][Br], 10275.92 µg/g rutin, 899.73 µg/g quercetin, and 554.32 µg/g scoparone were obtained. Overall, ionic liquids and deep eutectic solvents have potential applications as extraction additives for the extraction of bioactive compounds from nature plants.  相似文献   

15.
《印度化学会志》2021,98(11):100210
Organic solvents have been of great importance for many chemical synthesis, storage and separation processes. The industries and research laboratories are heavily dependent on organic solvents in bulk; are highly volatile, lipophilic, toxic and causes a number of issues to the human health and the environmental fitness. Neoteric solvents have been proposed as a better substitute to these harmful organic solvents, and scientists have come up with several neoteric solvents in the last three decades, to name a few: ionic liquids (ILs), switchable solvents, bio-based solvents and deep eutectic solvents (DESs). These neoteric solvents attract a great deal of interest from the scientific community due to plenty of possibilities, therefore, they have huge impact and novel studies are reported quite frequently on the same. In this review, we intend to focus to brief on deep eutectic solvents, about their properties, synthesis, promising applications, and how they gradually emerged from ILs and later stood out as a different class of neoteric solvent, which overcomes many shortcomings of ILs. DESs are possibly receptive synthetic compounds and their relationship based on the hydrogen bond donor or acceptor restricts their reactivity and allow to explore in different disciplines of science.  相似文献   

16.
In this Minireview, the state of the art in the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as alternative reaction media for biocatalytic processes and biomass conversion is presented. Initial, proof‐of‐concept studies, more than a decade ago, involved first‐generation ILs based on dialkylimidazolium cations and non‐coordinating anions, such as tetrafluoroborate and hexafluorophosphate. More recently, emphasis has switched to more environmentally acceptable second‐generation ILs comprising cations, which are designed to be compatible with enzymes and, in many cases are derived from readily available, renewable resources, such as cholinium salts. Protic ionic liquids (PILs), prepared simply by mixing inexpensive amines and acids, are particularly attractive from both an environmental and economic viewpoint. DESs, prepared by mixing inexpensive salts with, preferably renewable, hydrogen‐bond donors such as glycerol and amino acids, have also proved suitable reaction media for biocatalytic conversions. A broad range of enzymes can be used in ILs, PILs and DESs, for example lipases in biodiesel production. These neoteric solvents are of particular interest, however, as reaction media for biocatalytic conversions of substrates that have limited solubility in common organic solvents, such as carbohydrates, nucleosides, steroids and polysaccharides. This has culminated in the recent focus of attention on their use as (co)solvents in the pretreatment and saccharification of lignocellulose as the initial steps in the conversion of second‐generation renewable biomass into biofuels and chemicals. They can similarly be used as reaction media in subsequent conversions of hexoses and pentoses into platform chemicals.  相似文献   

17.
Deep eutectic solvents were used in both dispersive liquid–liquid microextraction and solid‐phase extraction for the purification of chloromycetin and thiamphenicol from milk. In the dispersive liquid–liquid microextraction procedure, deep eutectic solvents mixed with chloroform at different ratios (0:1–5:1, v/v) were used as the extraction agent to optimize the procedure, and the ratio of 2:1 v/v was found to be the best extraction agent with 87.23 and 83.17% recoveries of chloromycetin and thiamphenicol, respectively. Furthermore, deep eutectic solvents were also used to modify molecular imprinted polymers in solid‐phase extraction procedure, and the polymers were used to purify chloromycetin and thiamphenicol from milk. Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy were used to characterize the polymers. The solid‐phase extraction recoveries with deep eutectic solvents with molecularly imprinted polymers (chloromycetin and thiamphenicol, two templates), molecularly imprinted polymers (without deep eutectic solvents), and nonimprinted polymers (without a template) for chloromycetin were 91.23, 82.64, and 57.3%, respectively, and recoveries for thiamphenicol were 87.02, 79.03, and 52.27%, respectively. The recoveries of chloromycetin and thiamphenicol from milk in the solid‐phase extraction procedure were higher than using deep eutectic solvents mixed with chloroform as the extraction agent in the dispersive liquid–liquid microextraction procedure.  相似文献   

18.
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl‐ menthol‐based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air‐assisted dispersive liquid–liquid microextraction method for preconcentration and extraction of benzophenone‐type UV filters from aqueous samples followed by high‐performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl‐ menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high‐performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone‐type filters in environmental water samples with relative recoveries of 88.8–105.9%.  相似文献   

19.
Ab initio molecular dynamic simulations reveal significantly reduced ion charges in several choline‐based deep eutectic solvents, which are cheap and eco‐friendly alternatives to ionic liquids. Increasing hydrogen bond strength between the anion and the organic compound enhances charge spreading from the anion to the organic compound while the positive charge is stronger located at the cation. Nonetheless, the negative charge transferred from chloride to urea in choline chloride urea mixtures is negligible. Thus, it seems questionable if charge delocalization occurring through hydrogen bonding between the halide anion and the organic compound is responsible for the deep eutectic melting point.  相似文献   

20.
Methyltriphenylphosphonium bromide/chalcone/formic acid, a green ternary deep eutectic solvent, was applied as a functional monomer and dummy template simultaneously in the synthesis of a new molecularly imprinted polymer. Ternary deep eutectic solvent based molecularly imprinted polymers are used as a solid‐phase extraction sorbent in the separation and purification of rutin and quercetin from Herba Artemisiae Scopariae combined with high‐performance liquid chromatography. Fourier transform infrared spectroscopy and field‐emission scanning electron microscopy were applied to characterize the deep eutectic solvent based molecularly imprinted polymers synthesized using different molar ratios of chalcone. The static and competitive adsorption tests were performed to examine the recognition ability of the molecularly imprinted polymers to rutin and quercetin. The ternary deep eutectic solvent consisting of formic acid/chalcone/methyltriphenylphosphonium bromide (1:0.05:0.5) had the best molecular recognition effect. After optimization of the washing solvents (methanol/water, 1:9) and eluting solvents (acetonitrile/acetic acid, 9:1), a reliable analytical method was developed for strong recognition towards rutin and quercetin in Herba Artemisiae Scopariae with satisfactory extraction recoveries (rutin: 92.48%, quercetin: 94.23%). Overall, the chalcone ternary deep eutectic solvent‐based molecularly imprinted polymer coupled with solid‐phase extraction is an effective method for the selective purification of multiple bioactive compounds in complex samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号