首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated systematically the mechanistic aspects of the Ag-Pd bimetallic cluster formation within sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles by using in-situ X-ray absorption spectroscopy (XAS). A two-step sequential reduction method is employed for the synthesis of Ag-Pd bimetallic clusters. The first step involves preparation of Ag nanoclusters, by mixing the Ag+ ions containing the AOT microemulsion system with a reducing agent hydrazine (N2H4) containing the AOT microemulsion system. In the second step, the addition of Pd2+ ions to Ag nanoclusters led to the formation of Ag-Pd bimetallic clusters via the reaction between Ag nanoclusters and Pd2+ ions in AOT reverse micelles. The reduction of silver ions and the formation of corresponding Ag nanoclusters are monitored as a function of the dosage of the reducing agent, hydrazine. In-situ XAS allowed probing of the reaction between Ag nanoclusters and Pd2+ ions during the formation of Ag-Pd bimetallic clusters. Analysis of Ag and Pd K-edge XAS spectra reveals that in the final stage Ag-Pd clusters, in which "Ag" atoms prefer to be surrounded by "Pd" and "Pd" atoms prefer to be surrounded by "Pd", were formed. On the basis of XAS results presented here, we are able to propose a structural model for each step so that this work provides a detailed insight into the mechanism of nucleation and growth of Ag-Pd bimetallic clusters. We also discussed the atomic distribution of Ag and Pd atoms in Ag-Pd bimetallic clusters based on the calculated XAS structural parameters.  相似文献   

2.
Photoinduced disruption of a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelle is triggered by a Malachite Green leuconitrile derivative (MGL). UV irradiation of MGL solubilized in an AOT-water-chloroform mixture creates a cationic surfactant that interacts electrostatically with the anionic AOT. We investigated the disruption of the reverse micelle by using proton nuclear magnetic resonance spectroscopy and found that UV irradiation of MGL decreases the number of water molecules solubilized in the interior of the AOT reverse micelles. Furthermore, the photoinduced disruption of the reverse micelle is shown to release ribonuclease A, which is trapped in the water in the interior of the AOT reverse micelle. This photoinduced release may offer a desirable transport system of biopolymers.  相似文献   

3.
Reverse micelles currently gain increasing interest in chemical technology. They also become important in biomolecular NMR due to their ability to host biomolecules such as proteins. In the present paper, a procedure for the preparation of high-pressure NMR samples containing reverse micelles dissolved in supercritical xenon is presented. These reverse micelles are formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT). For the first time, NMR spectroscopy could be applied to reverse micelles in supercritical xenon. The AOT/H(2)O/Xe system was studied as a function of experimental parameters such as xenon pressure, water content, and salt concentration. Optimum conditions for reverse micelle formation in supercritical xenon could be determined. It is, furthermore, demonstrated that biomolecules such as amino acids and proteins can be incorporated into the reverse micelles dissolved in supercritical xenon.  相似文献   

4.
We present a systematic investigation and analysis of the structure and stability of reverse micelle systems with the addition of NH(4)OH, ZrOCl(2), and Al(NO(3))(3) salts. We demonstrate that the reverse micelle size decreases with increasing salt additions until one reaches a critical concentration, which characterizes the onset of system destabilization. The concept of an electrical double layer, as it applies to reverse micelles, is considered for explaining features of destabilization, including the initial decrease in reverse micelle size, the destabilization concentration, and the effect of cation valence. We propose that the reduction in size prior to instability is caused by compression of the reverse micelle electrical double layers, as higher concentrations of salts are present. The reduced thickness of the electrical double layers allows the decaying potentials to move into closer proximity to each other before generating enough repulsion to balance the forces for reverse micelle formation and form a new equilibrium average reverse micelle size. The point of reverse micelle instability has been related to the formation of a two-phase system as a result of the inability to further compress the salt co-ions in the core of the reverse micelles, which would cause an excessive repulsive force between the overlapping potentials. We have extracted a critical potential of -89 nV between the two overlapping potentials for the AOT/water/isooctane (ω(0) = 10) systems studied. All these effects have important implications for the preparation of nanopowders by reverse micelle synthesis. If the reverse micelles are unstable before the precipitates are formed, then the advantage of reverse micelle synthesis is immediately lost.  相似文献   

5.
6-Propionyl-2-(N,N-dimethyl)aminonaphtahalene, PRODAN, is widely used as a fluorescent molecular probe due to its significant Stokes shift in polar solvents. It is an aromatic compound with intramolecular charge-transfer (ICT) states which can be particularly useful as sensors. In this work, we performed absorption, steady-state, time-resolved fluorescence (TRES), and time-resolved area normalized emission (TRANES) spectroscopies on PRODAN dissolved in nonaqueous reverse micelles. The reverse micelles are composed of polar solvents/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane. Sequestered polar solvents included ethylene glycol (EG), propylene glycol (PG), glycerol (GY), formamide (FA), dimethylformamide (DMF), and dimethylacetamide (DMA). The experiments were performed with varying surfactant concentrations at a fixed molar ratio W(S) = [polar solvent]/[AOT]. In every reverse micelle studied, the results show that PRODAN undergoes a partition process between the external solvent and the reverse micelle interface. The partition constants, K(p), are quantified from the changes in the PRODAN emission and/or absorption spectra with the surfactant concentration. The K(p) values depend strongly on the encapsulated polar solvent and correlate quite well with the AOT reverse micelle interface's zones where PRODAN can exist and emits. Thus, the partition toward the reverse micelle interface is strongly favored in DMF and DMA containing micelles where the PRODAN emission comes only from an ICT state. For GY/AOT reverse micelles, the K(p) value is the lowest and only emission from the local excited (LE) state is observed. On the other hand, for EG/AOT, PG/AOT, and water/AOT reverse micelles, the K(p) values are practically the same and emission from both states (LE and ICT) is simultaneously detected. We show here that it is possible to control the PRODAN state emission by simply changing the properties of the AOT reverse micelle interfaces by choosing the appropriate polar solvent to make the reverse micelle media. Indeed, we present experimental evidence with the answer to the long time question about from which state does PRODAN emit, a process that can be controlled using the unique reverse micelle interfaces properties.  相似文献   

6.
The interior water pool of aerosol OT (AOT) reverse micelles tends toward bulk water properties as the micelle size increases. Thus, deviations from bulk water behavior in large reverse micelles are less expected than in small reverse micelles. Probing the interior water pool of AOT reverse micelles with a highly charged decavanadate (V(10)) oligomer using (51)V NMR spectroscopy shows distinct changes in solute environment. For example, when an acidic stock solution of protonated V(10) is placed in a reverse micelle, the (51)V chemical shifts show that the V(10) is deprotonated consistent with a decreased proton concentration in the intramicellar water pool. Results indicate that a proton gradient exists inside the reverse micelles, leaving the interior neutral while the interfacial region is acidic.  相似文献   

7.
Nanocrystalline cadmium selenide (CdSe) is a low bandgap material (E(g)=1.75 eV, at room temperature) with potential applications in photoelectronic devices. Its electronic properties are dependent on the dimensions of the crystals. In this study, one-dimensional wurtzite CdSe nanoparticles with a diameter of 43+/-6 nm and an aspect ratio of 3.7+/-0.6 were synthesized through a novel reverse micelle assisted hydrothermal method at a relatively low temperature. This method combines the advantages of the hydrothermal method's ability to achieve good crystallinity with the well-controlled growth offered by the reverse micelle method. The morphology of the nanoparticles can be controlled by the amount of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), the amount of hydrazine hydrate and the reaction temperature. It is proposed that AOT controls the length while hydrazine hydrate controls the diameter of the growing nanocrystals. The photoluminescence (PL) of individual nanorods and the longitudinal-optical phonon properties were mapped using confocal microscopy. Raman spectroscopy showed a blue-shift of both the LO and 2LO phonon peaks which may be due to a lattice contraction of the CdSe nanorods. A nucleation and growth mechanism for these nanoparticles is also proposed based on time-dependent studies.  相似文献   

8.
Polypyrrole (PPy) nanotubes were readily fabricated through chemical oxidation polymerization in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse (water-in-oil) emulsions. The reverse cylindrical micelle phase was characterized, and the key factors affecting the formation of PPy nanotubes were systematically inspected. AOT reverse cylindrical micelles were prepared via a cooperative interaction between an aqueous FeCl3 solution and AOT in an apolar solvent. In the H2O/FeCl3/AOT/apolar solvent system, the aqueous FeCl3 solution played a role in increasing the ionic strength and decreasing the second critical micelle concentration of AOT. As a result, AOT reverse cylindrical micelles could be spontaneously formed in an apolar solvent. In addition, iron cations were adsorbed to the anionic AOT headgroups that were capable of extracting metal cations from the aqueous core. Under these conditions, the addition of pyrrole monomer resulted in the chemical oxidation polymerization of the corresponding monomer at the surface of AOT reverse cylindrical micelles, followed by the formation of tubular PPy nanostructures. In a typical composition (74.0 wt % hexane, 22.4 wt % AOT, and 3.6 wt % aqueous FeCl3 solution at 15 degrees C), the average diameter of PPy nanotubes was approximately 94 nm and their length was more than 2 mum. The PPy nanotube dimensions were affected by synthetic variables such as the weight ratio of aqueous FeCl3 solution/AOT, type of apolar solvent, and reaction temperature. Moreover, the relationship between the diameter and the conductivity of the nanotubes was investigated.  相似文献   

9.
Sodium bis(2-ethylhexyl)sulfosuccinate (AOT) is a surfactant commonly used to encapsulate water soluble proteins within the aqueous core of a reverse micelle. In the context of high-resolution NMR studies of encapsulated proteins the size of the resulting reverse micelle is critically important. We have designed and synthesized a short AOT analogue, 3,3-dimethyl-1-butylsulfosuccinate sodium salt and determined that it is able to form reverse micelles and to encapsulate the protein ubiquitin with high structural fidelity. AOT is often found to significantly destabilize encapsulated proteins, largely through charge-charge interactions between the anionic headgroup and the surface of the protein. Here we demonstrate, for the first time, that proportional mixtures of anionic and cationic surfactants can form reverse micelles that are also capable of protein encapsulation with high fidelity.  相似文献   

10.
Photoinduced intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABOA) in AOT/cyclohexane/H2O reverse micelle was investigated and compared with that in CTAB/1-heptanol/H2O reverse micelle. It is proposed that the DMABOA molecule exists at the AOT reverse micelle water pool interface with its carboxylic group heading toward the water pool while the dimethylaminophenyl moiety buried in the micellar phase. Dual fluorescence of DMABOA that is indicative of the ICT reaction in the excited state was observed over the investigated water pool size, W of 3-17, in the AOT reverse micelle. The ICT emission of DMABOA in the AOT reverse micelle-water pool interface was found to be much weaker than that in the CTAB reverse micelle-water pool interface, and was attributed to the parallel direction of the electric field at the AOT reverse micelle-water pool interface to the charge transfer.  相似文献   

11.
Microemulsions are effective media for solution-based synthesis of metallic nanoparticles where surfactants and other ionic species influence the directed assembly of the nanomaterials with specific sizes, geometries, and compositions. This study demonstrates the effects of chloride ion on the synthesis of copper nanoparticles within the sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle system utilizing both liquid isooctane and compressed propane as the bulk solvent. Copper nanoparticle synthesis can be achieved in the presence of HCl in the micelle core, taking advantage of the buffering action of the AOT surfactant. The concentration of chloride ions influence the particle growth rate and dispersion in liquid isooctane. The presence of chloride ions during particle synthesis in compressed propane has a significant effect on the geometry and structure of the copper nanomaterials produced. Chloride ion addition to the compressed propane/Cu(AOT)(2)-AOT/water reverse micelle system at 20 degrees C and 310 bar results in the formation of diamond-shaped copper nanoparticle assemblies. The copper nanoparticle assemblies exhibit unique structure and retain this structure through repeated solvent processing steps, allowing separation and recovery of the assembled diamond-shaped copper nanoparticle structures.  相似文献   

12.
Neutron Spin-Echo (NSE) spectroscopy has been employed to study the interfacial properties of reverse micelles formed with the common surfactant sodium bis-2-ethylhexyl-sulfosuccinate (AOT) in liquid alkane solvents and compressed propane. NSE spectroscopy provides a means to measure small energy transfers for incident neutrons that correspond to thermal fluctuations on the nanosecond time scale and has been applied to the study of colloidal systems. NSE offers the unique ability to perform dynamic measurements of thermally induced shape fluctuation in the AOT surfactant monolayer. This study investigates the effects of the bulk solvent properties, water content, and the addition of octanol cosurfactant on the bending elasticity of AOT reverse micelles and the reverse micelle dynamics. By altering these solvent properties, specific trends in the bending elasticity constant, k, are observed where increasing k corresponds to an increase in micelle rigidity and a decrease in intermicellar exchange rate, k(ex). The observed corresponding trends in k and k(ex) are significant in relating the dynamics of microemulsions and their application as a reaction media. Compressed propane was also examined for the first time with a high-pressure, compressible bulk solvent where variations in temperature and pressure are used to tune the properties of the bulk phase. A decrease in the bending elasticity is observed for the d-propane/AOT/W = 8 reverse micelle system by simultaneously increasing the temperature and pressure, maintaining constant density. With isopycnic conditions, a constant translational diffusion of the reverse micelles through the bulk phase is observed, conforming to the Stokes-Einstein relationship.  相似文献   

13.
In this study, we demonstrate that mixed reverse micelles are good candidates to be used as nanoreactors for formation of shape-controlled high-quality colloidal nanocrystals and nanowires under mild conditions. Manipulation of the rate of nucleation and subsequent growth of the Au in the mixed reverse micelles induce drastic changes in the particle shape and structure. Here we demonstrate that control of the nucleation and growth kinetics of the Au in the mixed reverse micelles can be used to vary the shapes of the resulting particles from a nearly spherical morphology to cylinders, trigons and cubics. The characterization of the resultant particles, the effects of synthesis conditions (such as concentration of NaCl, addition of glycerol, and reaction temperature) on particle sizes, particle size distribution, and shape of particle formation have been investigated. This study will help us to understand the chemical control synthesis of crystal growth processes at the atomic level.  相似文献   

14.
Proton transfer from the photoacid 8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid (HPTS) to water is studied in reverse micelles with ionic (AOT=sodium dioctyl sulfosuccinate) and non‐ionic (BRIJ‐30=polyoxyethylene(4)lauryl ether) surfactants. The dynamics are studied by probing the transient electronic absorption and transient vibrational absorption, both with sub‐picosecond resolution. The reverse micelle sizes range from approximately 1.6 to 5.5 nm in diameter. For both surfactants it is found that the rate of proton transfer decreases with decreasing reverse micelle size, regardless of surfactant. In addition, for AOT reverse micelles, a fraction of the photoacid molecules exhibit non‐radiative decay, preventing proton transfer.  相似文献   

15.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

16.
The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.  相似文献   

17.
The growth kinetics for AgI nanoparticles formed in the solutions of water/AOT reverse micelles in n-hexane, n-octane, n-decane, and n-dodecane were investigated. In small micelles, the rate of nanoparticles growth was found to be independent of the type of solvent, while in large micelles the growth rate grew with increasing length of solvent molecules. The effect was explained by a different amount of free water in the micelle pools of the same size.  相似文献   

18.
The effect of compressed CO2 on the critical micelle concentration (cmc) and aggregation number of sodium bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles in isooctane solution was studied by UV/Vis and fluorescence spectroscopy methods in the temperature range of 303.2-318.2 K and at different pressures or mole fractions of CO2 (X(CO2)). The capacity of the reverse micelles to solubilize water was also determined by direct observation. The standard Gibbs free energy (DeltaGo(m)), standard enthalpy (DeltaHo(m)), and standard entropy (DeltaSo(m)) for the formation of the reverse micelles were calculated by using the cmc data determined. It was discovered that the cmc versus X(CO2) curve and the DeltaGo(m) versus X(CO2) curve for a fixed temperature have a minimum, and the aggregation number and water-solubilization capacity of the reverse micelles reach a maximum at the X(CO2) value corresponding to that minimum. These results indicate that CO2 at a suitable concentration favors the formation of and can stabilize AOT reverse micelles. A detailed thermodynamic study showed that the driving force for the formation of the reverse micelles is entropy.  相似文献   

19.
Mechanisms of the formation and stabilization of gold nanoparticles in reverse micelles of micro-emulsions based on Triton X-100 (TX-100) and Aerosol OT (AOT) are studied. The instability of AOT-based microemulsions is shown to be caused by the oxidative degradation of gold nanoparticles in micelle water pools. Methods are proposed for the stabilization of these microemulsions. It is revealed that the mean size of gold nanoparticles synthesized in TX-100 reverse micelles in the presence of sodium sulfite is markedly smaller than that of particles prepared in AOT reverse micelles. This is explained by the fact that gold clusters are formed in the micelle shell rather than in the water pool. In the shell, the clusters are stabilized by oxyethylene groups of TX-100 molecules.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 534–540.Original Russian Text Copyright © 2005 by Spirin, Brichkin, Razumov.  相似文献   

20.
The dramatic impact of differing environments on proton transfer dynamics of the photoacid HPTS prompted us to investigate these systems with two highly complementary methods: ultrafast time-resolved transient absorption and two-dimensional NMR spectroscopies. Both ultrafast time-resolved transient absorption spectroscopy and time-resolved anisotropy decays demonstrate the proton transfer dynamics depend intimately on the specific reverse micellar system. For w(0) = 10 reverse micelles formed with anionic AOT surfactant, the HPTS proton transfer dynamics are similar to dynamics in bulk aqueous solution, and the corresponding (1)H 2D NOESY NMR spectra display no cross peaks between HPTS and AOT consistent with the HPTS residing well hydrated by water in the interior of the reverse micelle water pool. In contrast, ultrafast transient absorption experiments show no evidence for HPTS photoinduced proton transfer reaction in reverse micelles formed with the cationic CTAB surfactant. In CTAB reverse micelles, clear cross peaks between HPTS and CTAB in the 2D NMR spectra show that HPTS embeds in the interface. These results indicate that the environment strongly impacts the proton transfer reaction and that complementary experimental techniques develop understanding of how location critically affects molecular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号