首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

2.
The nucleobase anion glycosylation of 3-bromo-4-isopropoxy-1H-pyrazolo[3,4-d]pyrimidin-6-amine (6) with 3,5-di-O-benzoyl-2-deoxy-2-fluoro-alpha-d-arabinofuranosyl bromide (5) furnished the protected N(1)-beta-d-nucleosides 7 (60%) and 8 (ca. 2%) along with the N(2)-beta-d-regioisomer 9 (9%). Debenzoylation of compounds 7 and 9 yielded the nucleosides 10 (81%) and 11 (76%). Compound 10 was transformed to the 2'-deoxyguanosine derivative 1 [6-amino-3-bromo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4-one] (85% yield) and the purine-2,6-diamine analogue 2 [3-bromo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4, 6-diamine] (78%). Both nucleosides form more than 98% N-conformer population (P(N) ca. 358 degrees and psi(m) ca. 37 degrees ) in aqueous solution. Single-crystal X-ray analysis of 1 showed that the sugar moiety displays also the N-conformation [P = 347.3 degrees and psi(m) = 34.4 degrees ] in the solid state. The remarkable rigid N-conformation of the pyrazolo[3,4-d]pyrimidine 2'-deoxy-2'-fluoro-beta-d-arabinonucleosides 1 and 2 observed in solution is different from that of the parent purine 2'-deoxy-2'-fluoro-beta-d-arabinonucleosides 3 and 4, which are in equilibrium showing almost equal distribution of the N/S-conformers.  相似文献   

3.
The crystal structure of Li7[Mn(V)N4] was re-determined. Isolated tetrahedral [Mn(V)N4](7-) ions are arranged with lithium cations to form a superstructure of the CaF2 anti-type (P4bar3n, No. 218, a = 956.0(1) pm, Z = 8). According to measurements of the magnetic susceptibility, the manganese (tetrahedral coordination) is in a d(2) S = 1 state. Thermal treatment of Li7[Mn(V)N4] under argon in the presence of elemental lithium at various temperatures leads to Li24[Mn(III)N3]3N2, Li5[(Li1-xMnx)N]3, and Li2[(Li1-xMn(I)x)N], respectively. Li24[Mn(III)N3]3N2 (P3bar1c, No. 163, a = 582.58(6) pm, c = 1784.1(3) pm, Z = 4/3) crystallizes in a trigonal unit cell, containing slightly, but significantly nonplanar trigonal [MnN3](6-) units with C3v symmetry. Measurements of the magnetic susceptibility reveal a d(4) S = 1 spin-state for the manganese (trigonal coordination). Nonrelativistic spin-polarized DFT calculations with different molecular models lead to the conclusion that restrictions in the Li-N substructure are responsible for the distortion from planarity of the [Mn(III)N3](6-). Li5[(Li1-xMnx)N]3 (x = 0.59(1), P6bar2m, No. 189, a = 635.9(3) pm, c = 381.7(2) pm, Z = 1) is an isotype of Li5[(Li1-xNix)N]3 with manganese in an average oxidation state of about +1.6. The crystal structure is a defect variant of the alpha-Li3N structure type with the transition metal in linear coordination by nitrogen. Li2[(Li1-xMn(I)x)N] (x = 0.67(1), P6/mmm, No. 191, a = 371.25(4) pm, c = 382.12(6) pm, Z = 1) crystallizes in the alpha-Li3N = Li2[LiN] structure with partial substitution of the linearly nitrogen-coordinated Li-species by manganese(I). Measurements of the magnetic susceptibility are consistent with manganese (linear coordination) in a low-spin d(6) S = 1 state.  相似文献   

4.
The alkali dicyanamides M[N(CN)2] (M=K, Rb) were synthesized through ion exchange, and the corresponding tricyanomelaminates M3[C6N9] were obtained by heating the respective dicyanamides. The thermal behavior of the dicyanamides and their reaction to form the tricyanomelaminates were investigated by temperature-dependent X-ray powder diffractometry and thermoanalytical measurements. Potassium dicyanamide K[N(CN)2] was found to undergo four phase transitions: At 136 degrees C the low-temperature modification alpha-K[N(CN)2] transforms to beta-K[N(CN)2], and at 187degrees C the latter transforms to the high-temperature modification gamma-K[N(CN)2], which melts at 232 degrees C. Above 310 degrees C the dicyanamide ions [N(CN)2]- trimerize and the resulting tricyanomelaminate K3[C6N9] solidifies. Two modifications of rubidium dicyanamide have been identified: Even at -25 degrees C, the a form slowly transforms to beta-Rb[N(CN)2] within weeks. Rb[N(CN)2] has a melting point of 190 degrees C. Above 260 degrees C the dicyanamide ions [N(CN)2]- of the rubidium salt trimerize in the melt and the tricyanomelaminate Rb3[C6N9] solidifies. The crystal structures of all phases were determined by powder diffraction methods and were refined by the Rietveld method. alpha-K[N(CN)2] (Pbcm, a = 836.52(1), b = 46.90(1), c =7 21.27(1) pm, Z = 4), gamma-K[N(CN)2] (Pnma, a = 855.40(3), b = 387.80(1), 1252.73(4) pm, Z = 4), and Rb[N(CN)2] (C2/c, a = 1381.56(2), b = 1000.02(1), c = 1443.28(2) pm, 116.8963(6) degrees, Z = 16) represent new structure types. The crystal structure of beta-K[N(CN)2] (P2(1/n), a = -726.92(1), b 1596.34(2), c = 387.037(5) pm, 111.8782(6) degrees, Z = 4) is similar but not isotypic to the structure of alpha Na[N(CN)2]. alpha-Rb[N(CN)2] (Pbcm, a = 856.09(1), b = 661.711(7), c = 765.067(9) pm, Z = 4) is isotypic with alpha-K[N(CN)2]. The alkali dicyanamides contain the bent planar anion [N(CN)2]- of approximate symmetry C2, (average bond lengths: C-N(bridge) 133, C-N(term) 113 pm; average angles N-C-N 170 degrees, C-N-C 120 degrees). K3[C6N9] (P2(1/c), a = 373.82(1), b = 1192.48(5), c = 2500.4(1) pm, beta = 101.406(3) degrees, Z = 4) and Rb,[C6N9] (P2(1/c), a = 389.93(2), b = 1226.06(6), c = 2547.5(1) pm, 98.741(5) degrees, Z=4) are isotypic and they contain the planar cyclic anion [C6N9]3-. Although structurally related, Na3[C6N9] is not isotypic with the tricyanomelaminates M3[C6N9] (M = K, Rb).  相似文献   

5.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

6.
Reactions of N,N,N-tridentate quinolinyl anilido-imine ligands with AlMe(3) afford mononuclear aluminum complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}AlMe(2) (Ar = 2,6-Me(2)C(6)H(3) (1a), 2,6-Et(2)C(6)H(3) (1b), 2,6-(i)Pr(2)C(6)H(3) (1c)) or dinuclear complexes AlMe(3){κ(1)-[{2-[ArN[double bond, length as m-dash]C(H)C(6)H(4)]N(8-C(9)H(6)N)}-κ(2)]AlMe(2) (R = 2,6-Me(2)C(6)H(3) (2a), 2,6-Et(2)C(6)H(3) (2b), 2,6-(i)Pr(2)C(6)H(3) (2c)) depending on the ratios of reactants used. Similar reactions of ZnEt(2) with these ligands give the monoligated ethyl zinc complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}ZnEt (Ar = 2,6-Me(2)C(6)H(3) (3a), 2,6-Et(2)C(6)H(3) (3b), 2,6-(i)Pr(2)C(6)H(3) (3c)) or bisligated complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}Zn{κ(2)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]} (Ar = 2,6-Me(2)C(6)H(3) (4a), 2,6-Et(2)C(6)H(3) (4b), 2,6-(i)Pr(2)C(6)H(3) (4c)). These complexes were well characterized by NMR and the structures of 1a, 2a, 2c, 3b and 4c were confirmed by X-ray diffraction analysis. The aluminum and zinc complexes were tested to initiate lactide polymerization in which the zinc complexes show moderate to high activities in the presence of benzyl alcohol.  相似文献   

7.
Reaction between the Os(VI)-nitrido complex, trans-[OsVI(tpy)(Cl)2(N)]PF6 (tpy = 2,2':6',2' '-terpyridine), and ammonia (NH3) under N2 in dry CH3CN gives the mu-1,3-azido bridged [OsII-N3-OsII]- dimer, trans,trans-NH4[(tpy)(Cl)2OsII(N3)OsII(Cl)2(tpy)]. It undergoes air oxidation to give the [OsIII-N3-OsIII]+ analogue, trans,trans-[(tpy)(Cl)2OsIII(N3)OsIII(Cl)2(tpy)]PF6 ([OsIII-N3-OsIII]PF6), which has been isolated and characterized. The structural formulation as a mu-1,3-N3 bridged complex has been established by infrared and 15N NMR measurements on the 15N-labeled forms, [OsIII-14N=15N=14N-OsIII]+, [OsIII-15N=14N=15N-OsIII]+, and [OsIII-15N=15N=15N-OsIII]+. Cyclic voltammetric measurements in 0.2 M Bu4NPF6/CH3CN reveal the existence of five chemically reversible waves from 1.40 to -0.12 V for couples ranging from OsV-OsIV/OsIV-OsIV to OsIII-OsII/OsII-OsII. DeltaE1/2 values for couples adjacent to the three mixed-valence forms are 0.19 V for OsIII-OsII, 0.52 V for OsIV-OsIII, and >0.71 V for OsV-OsIV. In CH3CN at 60 degrees C, [OsIII-N3-OsIII]+ undergoes a [2 + 3] cycloaddition with CH3CN at the mu-N3- bridge followed by a solvolysis to give trans-[OsIII(tpy)(Cl)2(5-MeCN4)] and trans-[OsIII(tpy)(Cl)2(NCCH3)]PF6.  相似文献   

8.
Konu J  Chivers T  Tuononen HM 《Inorganic chemistry》2006,45(26):10678-10687
Two-electron oxidation of the [N(PiPr2E)2]- anion with iodine produces the cyclic [N(PiPr2E)2]+ (E =Se, Te) cations, which exhibit long E-E bonds in the iodide salts [N(PiPr2Se)2]I (4) and [N(PiPr2Te)2]I (5). The iodide salts 4 and 5 are converted to the ion-separated salts [N(PiPr2Se)2]SbF6 (6) and [N(PiPr2Te)2]SbF6 (7) upon treatment with AgSbF6. Compounds 4-7 were characterized in solution by multinuclear NMR, vibrational, and UV-visible spectroscopy supported by DFT calculations. A structural comparison of salts 4-7 and [N(PiPr2Te)2]Cl (8) confirms that the long E-E bonds in 4, 5, and 8 can be attributed primarily to the donation of electron density from a lone pair of the halide counterion into the E-E sigma* orbital (LUMO) of the cation. The phenyl derivative [N(PPh2Te)2]I (9) was prepared in a similar manner. However, the attempted synthesis of the selenium analogue, [N(PPh2Se)2]I, produced a 1:1 mixture of [N(PPh2Se)2(mu-Se)][I] (10) and [SeP(Ph2)N(Ph2)PI] (11). DFT calculations of the formation energies of 10 and 11 support the observed decomposition. Compound 10 is a centrosymmetric dimer in which two six-membered NP2Se3 rings are bridged by two I- anions. Compound 11 produces the nine-atom chain {[N(PPh2)2Se]2(mu-O)} (12) upon hydrolysis during crystallization. The reaction between [(TMEDA)NaN(PiPr2Se)2] and SeCl2 in a 1:1 molar ratio yields the related acyclic species [SeP(iPr2)N(iPr2)PCl] (13), which was characterized by multinuclear NMR spectroscopy and an X-ray structural determination.  相似文献   

9.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

10.
Red-black [HIPTN3N]Cr (1) ([HIPTN3N]3- = [(HIPTNCH2CH2)3N]3- where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3 = HexaIsoPropylTerphenyl) can be prepared from CrCl3, while green-black [HIPTN3N]Cr(THF) (2) can be prepared from CrCl3(THF)3. Reduction of {1|2} (which means either 1 or 2) with potassium graphite in ether at room temperature yields [HIPTN3N]CrK (3) as a yellow-orange powder. There is no evidence that dinitrogen is incorporated into 1, 2, or 3. Compounds that can be prepared readily from {1|2} include red [HIPTN3N]CrCO (4), blood-red [HIPTN3N]CrNO (6), and purple [HIPTN3N]CrCl (7, upon oxidation of {1|2} with AgCl). The dichroic (purple/green) Cr(VI) nitride, [HIPTN3N]CrN (8) was prepared from Bu4NN3 and 7. X-ray studies have been carried out on 4, 6, and 7, and on two co-crystallized compounds, 7 and [HIPTN3N]CrN3 (65:35) and [HIPTN3N]CrN3 and 8 (50:50). Exposure of a degassed solution of {1|2} to an atmosphere of ammonia does not yield "Cr(NH3)" as a stable and well-behaved species analogous to Mo(NH3). An attempt to reduce dinitrogen under conditions described for the catalytic reduction of dinitrogen by [HIPTN3N]Mo compounds with 8 yielded a substoichiometric amount (0.8 equiv) of ammonia, which suggests that some ammonia is formed from the nitride but none is formed from dinitrogen.  相似文献   

11.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

12.
The isotypic title compounds Ba4Pr7[Si12N23O][BN3], Ba4Nd7[Si12N23O][BN3], and Ba4Sm7[Si12N23O][BN3] were prepared by reaction of Pr, Nd, or Sm, with barium, BaCO3, Si(NH)2, and poly(boron amide imide) in nitrogen atmosphere in tungsten crucibles using a radiofrequency furnace at temperatures up to 1650 C. They were obtained as main products (approximately 70%) embedded in a very hard glass matrix in the form of intense dark green (Pr), orange-brown (Sm), or dark red (Nd) large single crystals, respectively. The stoichiometric composition of Ba4Sm7[Si12N23O][BN3] was verified by a quantitative elemental analysis. According to the single-crystal X-ray structure determinations (Ba4Ln7[Si12N23][BN3], Z= , P6 with Ln = Pr: a = 1225.7(1), c = 544.83(9) pm, R1 = 0.013, wR2 = 0.030; Ln = Nd: a = 1222.6(1), c = 544.6(1) pm, R1 = 0.017, wR2 = .039; Ln = Sm: a = 1215.97(5), c = 542.80(5) pm, R1 = 0.047, wR2 = 0.099) all three compounds are built up by a framework structure [Si12N23O]23- of corner-sharing SiX4 tetrahedrons (X = O, N). The oxygen atoms are randomly distributed over the X positions. The trigonal-planar orthonitridoborate ions [BN3]6- and also the Ln(3)3+ are situated in hexagonal cages of the framework (bond lengths Si-(N/O) 169-179 pm for Ln=Pr). The remaining Ba2+ and Ln3- ions are positioned in channels of the large-pored network. The trigonal-planar [BN3]6- ions have a B-N distance of 147.1(6) pm (for Ln = Pr). Temperature-dependent susceptibility measurements for Ba4Nd7[Si12N23O][BN3] revealed Curie-Weiss behavior above 60 K with an experimental magnetic moment of muexp = 3.36(5) microB/Nd. The deviation from Curie-Weiss behavior below 60 K may be attributed to crystal field splitting of the J = 9/2 ground state of the Nd3+ ions. No magnetic ordering is evident down to 4.2 K.  相似文献   

13.
The first phosphonate anions of aluminum-containing fluorine and an anionic bridged fluoroalkoxy derivative of titanium have been realized using n-Bu4NHF2 as a fluorinating agent in organometallic synthesis. Reactions of [RPO3AlMe]4 [R = Ph (1), t-Bu] with n-Bu4NHF2 yield organic-soluble compounds of the type [n-Bu4N]2[RPO3AlF2]2 [R = Ph (2), t-Bu (3)], whereas the reaction of Ti(O-i-Pr)4 with n-Bu4NHF2 results in the formation of [n-Bu4N][O-i-Pr)3Ti(mu-F)2(mu-O-i-Pr)Ti(O-i-Pr)3] (4). These compounds have been obtained in high yields and have been adequately characterized through spectroscopic techniques and X-ray diffraction studies.  相似文献   

14.
Cupric and cuprous complexes of bis(2-methylbenzimidazolyl)(2-methylthiophene)amine (L(1)), bis(2-methylbenzimidazolyl)benzylamine (L(2)), bis(2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (L(3)), bis(1-methyl-2-methylbenzimidazolyl)benzylamine (Me(2)L(2)), and bis(1-methyl-2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (Me(2)L(3)) have been spectroscopically, structurally, and electrochemically characterised. The thioether-containing ligands L(3) and Me(2)L(3) give rise to complexes with Cu-S bonds in solution and in the solid state, as evidenced by UV-vis spectroscopy and X-ray crystallography. The Cu(2+) complexes [L(1)CuCl(2)] (1), [L(2)CuCl(2)] (2) and [Me(2)L(3)CuCl]ClO(4) (3(Me,ClO4)) are monomeric in solution according to ESI mass spectrometry data, as well as in the solid state. Their Cu(+) analogues [L(1)Cu]ClO(4), [L(2)Cu]ClO(4), [L(3)Cu]ClO(4) (4-6), [BOC(2)L(1)Cu(NCCH(3))]ClO(4) (4(BOC)), [Me(2)L(2)Cu(NCCH(3))(2)]PF(6) (5(Me)) and [Me(2)L(3)Cu](2)(ClO(4))(2) (6(Me)) are also monomeric in acetonitrile solution, as confirmed crystallographically for 4(BOC) and 5(Me). In contrast, 6(Me) is dimeric in the solid state, with the thioether group of one of the ligands bound to a symmetry-related Cu(+) ion. Cyclic voltammetry studies revealed that the bis(2-methylbenzimidazolyl)amine-Cu(2+)/Cu(+) systems possess half-wave potentials in the range -0.16 to -0.08 V (referenced to the ferrocenium-ferrocene couple); these values are nearly 0.23 V less negative than those reported for related bis(picolyl)amine-derived ligands. Based on these observations, the N(3) or N(3)S donor set of the benzimidazole-derived ligands is analogous to previously reported chelating systems, but the electronic environment they provide is unique, and may have relevance to histidine and methionine-containing metalloenzymes. This is also reflected in the reactivity of [Me(2)L(2)Cu(NCCH(3))(2)](+) (5(Me)) and [Me(2)L(3)Cu](+) (6(Me)) towards dioxygen, which results in the production of the superoxide anion in both cases. The thioether-bound Cu(+) centre in 6(Me) appears to be more selective in the generation of O(2)˙(-) than 5(Me), lending evidence to the hypothesis of the modulating properties of thioether ligands in Cu-O(2) reactions.  相似文献   

15.
Three-coordinate Mo[N((t)Bu)Ar]3 binds cyanide to form the intermediate [Ar((t)Bu)N]3Mo-CN-Mo[N((t)Bu)Ar]3 but, unlike its N2 analogue which spontaneously cleaves dinitrogen, the C-N bond remains intact. DFT calculations on the model [NH2]3Mo/CN- system show that while the overall reaction is significantly exothermic, the final cleavage step is endothermic by at least 90 kJ mol(-1), accounting for why C-N bond cleavage is not observed experimentally. The situation is improved for the [H2N]3W/CN- system where the intermediate and products are closer in energy but not enough for CN- cleavage to be facile at room temperature. Additional calculations were undertaken on the mixed-metal [H2N]3Re+/CN- /W[NH2]3 and [H2N]3Re+/CN-/Ta[NH2]3 systems in which the metals ions were chosen to maximise the stability of the products on the basis of an earlier bond energy study. Although the reaction energetics for the [H2N]3Re+/CN /W[NH2]3 system are more favourable than those for the [H2N]3W/CN- system, the final C-N cleavage step is still endothermic by 32 kJ mol(-1) when symmetry constraints are relaxed. The resistance of these systems to C-N cleavage was examined by a bond decomposition analysis of [H2N]M-L1[triple bond]L2-M[NH2]3 intermediates for L1[triple bond]L2 = N2, CO and CN which showed that backbonding from the metal into the L1[triple bond]L2 pi* orbitals is significantly less for CN than for N2 or CO due to the negative charge on CN- which results in a large energy gap between the metal d(pi), and the pi* orbitals of CN-. This, combined with the very strong M-CN- interaction which stabilises the CN intermediate, makes C-N bond cleavage in these systems unfavourable even though the C[triple bond]N triple bond is not as strong as the bond in N2 or CO.  相似文献   

16.
The N(CH3)4(+) salt of the cis-IO2F3(2-) anion was synthesized from [N(CH 3)4][IO2F2] and excess [N(CH3)4][F] in CH3CN solvent. The [N(CH3)4] 2[IO2F3] salt was characterized by Raman, infrared, and (19)F solid-state MAS NMR spectroscopy. Geometry optimization and calculation of the vibrational frequencies at the DFT level of theory corroborated the experimental finding that the IO2F3(2-) anion exists as a single isomer with a cis-dioxo and mer-trifluoro arrangement. The fluorine atom in IO2F3(2-) that is trans to one of the oxygen atoms is weakly bound with a calculated bond length of 228.1 pm. The IO2F3(2-) anion is only the second example of an AEO 2F 3 species after XeO2F3(-).  相似文献   

17.
Green transparent single crystals of alpha-Ca3[Al2N4] (monoclinic, P2(1)/c, No. 14, a = 957.2(3) pm, b = 580.2(3) pm, c = 956.3(5) pm, beta = 111.62(3) degrees; Z = 4) were obtained from reactions of mixtures of the representative metals with nitrogen above temperatures of 1000 degrees C. beta-Ca3[Al2N4] (monoclinic, C2/c, No. 15, a = 1060.6(2) pm, b = 826.0(2) pm, c = 551.7(1) pm, beta = 92.1(1) degrees; Z = 4) was formed as a byproduct of a reaction of calcium with alumina under nitrogen at T = 930 degrees C in form of colorless crystals. The crystal structures of the two polymorphs contain edge- and corner-sharing AlN4 tetrahedra, leading to different layered anionic partial structures: infinity 2[AlN2/2N2/3)2(AlNN2/2N1/3)6/3(12-)] in the alpha-phase and infinity 2[Al2N2N4/2(6-)] in the beta-polymorph.  相似文献   

18.
[3+3] Cyclocondensation of 5-benzoyl-3-ethoxycarbonyl-6-methylthio-1-R-1,2-dihydropyrid-2-ones with heterocyclic N,N-and N,C-1,3-dinucleophiles proceeds regioselectively to give a series of new tri-and tetracyclic heterosystems, viz. derivatives of 5,6-dihydropyrazolo[1,5-a]pyrido[2,3-d]pyrimidin-6-one, 1,2-dihydropyrido[2,3-d]pyrido[2′,3′: 3,4]pyrazolo[1,5-a]pyrimidin-2-one, 8,9-dihydro-5H-pyrido-[2,3-d]thiazolo[3,2-a]pyrimidin-8-one, 1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrido[2,3-d]pyrimidin-2-one, and 1,2-dihydrobenzo[4,5]imidazo[1,2-g][1,6]naphthyridin-2-one.  相似文献   

19.
The tosylate (p-toluenesulfonate) cluster [Bu4N]2[W6Cl8(p-OSO2C6H4CH3)6] (1) has been prepared and characterized by IR and NMR spectroscopy, elemental analysis, and an X-ray crystal structure. This cluster complex is shown to be a useful starting material for the preparation of pseudohalide clusters, [Bu4N]2[W6Cl8(NCQ)6] (Q = O (2), S (3), and Se (4)), in high yields. Cluster 1 also serves as a precursor to the new cluster compounds: [Bu4N]2[W6Cl8(O2CCH3)6] (5), [Bu4N]2[W6Cl8((mu-NC)Mn(CO)2(C5H5))6] (6), [W6Cl8((mu-NC)Ru(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (7), and [W6Cl8((mu-NC)Os(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (8). X-ray crystal structures are reported for 1, 4, and 5.  相似文献   

20.
[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号