首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文主要探讨一阶微分方程M(x,y)dx+N(x,y)dy=0具有特殊积分因子μ(x~αy~β)存在的充要条件及其应用.  相似文献   

2.
宁荣健  时军 《大学数学》2017,33(5):44-48
通过引入n个积分因子,给出了n阶常系数线性微分方程y~(n)+p_1y~(n-1)+p_2y~(n-2)+…+p_(n-1)y′+p_ny=f(x)的积分因子解法,并进而得到n阶欧拉方程x~ny~(n)+p_1x~(n-1) y~(n-1)+…+p_(n-1)xy′+p_ny=f(x)的积分因子解法.该方法对任意的可积函数f(x),均可给出其通解形式,具有一定的理论研究价值和实际应用价值.  相似文献   

3.
<正> 关于P(x,y)dx+Q(x,y)dy的积分因子问题,在一般微分方程的专著中多有论述,但微分形式P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz的积因分子问题,则比较复杂,论述甚少。本文就这一问题作出初步探索。  相似文献   

4.
变量分离型积分因子存在定理及应用   总被引:4,自引:1,他引:3  
刘许成 《大学数学》2006,22(4):97-99
给出了变量分离型积分因子μ(x,y)=p(x)q(y)的定义,得到了微分方程M(x,y)dx+N(x,y)dy=0存在变量分离型积分因子μ(x,y)=p(x)q(y)的充要条件和计算积分因子的公式.  相似文献   

5.
复合型积分因子的存在定理及应用   总被引:18,自引:3,他引:15  
给出了微分方程 M( x,y) dx+N ( x,y) dy=0复合型积分因子的定义 ,得到了复合型积分因子存在的充要条件和计算公式 .  相似文献   

6.
一阶线性非齐次微分方程常用常数交易法求解,也可用下面两种方法求解.一、积分因子法一阶线性非齐次方程一般形式是y′+P(x)y=Q(x)其对应的齐次方程y ′+P(x)y=0有通解  相似文献   

7.
就微分形式P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz为某函数u(x,y,z)的全微分的积分因子进行了探讨,提出了积分因子的必要条件,以及P(x,y,z),Q(x,y,z),R(x,y,z)是齐次函数时,方程Pdx+Qdy+Rdz=0具有积分因子的充分条件进行了初步探讨.  相似文献   

8.
利用积分因子求解微分方程P(x,y)dx+Q(x,y)dy=0 (1)是一种有效的方法,但是求积分因子却不容易,对于简单的微分方程,可以通过观察来确定积分因子,但对于较复杂的微分方程,往往不容易直接求得它的积分因子.如果把方程(1)左端分组,找出每组的积分因子,或把方程的左端化为几个全微分的和,问题就可简单化.  相似文献   

9.
关于“复合型积分因子的存在定理及应用”的一个注记   总被引:1,自引:0,他引:1  
对“复合型积分因子的存在定理及应用”中给出的微分方程M(x,y)dx+N(x,y)dy=0复合型积分因子的定义进行剖析,得到了一般性复合型积分因子的定义及其存在的充要条件和计算公式.  相似文献   

10.
利用二元复合函数求导的链式法则,推导一阶线性齐次偏微分方程P(x)f1x+Q(y)f1y=0的解,由此得出一阶线性非齐次偏微分方程P(x)f1x+Q(x)f1y=R(x)f和P(x) f1zx+Q(y)f1y=R(x)f的通解.  相似文献   

11.
—阶微分方程p(x,y)dx Q(x,y)dy=0,当它不是全微分方程但可化为形式x~(α_1)y~(β_1)(m_1ydx n_1xdy) x~(α_2)Y~(β_2)(m_2ydx n_2xdy)=0(1)(其中α_1,β_1,m_i,n_i,i=1,2,均为常数)时,若用观察法不易找到其积分因子.并且一般即方程也不存在仅与x或仅与y有关的积分因子.下面介绍这类方程(即方程(1))求积分因子的一个方法.  相似文献   

12.
王芳 《大学数学》2012,28(2):75-80
矩阵微分方程经常出现在许多物理模型和工程技术模型中.利用矩阵样条构造形如{y(p)(x)=Ap-1(x)y(p-1)(x)+Ap-2(x)y(p-2)(x)+…+A1(x)y(1)(x)+A0(x)y(x)+B0(x),y(a)=ya,…,y(p-1)(a)=y(p-1)a,x∈[a,b];Ai(x),B0(x)∈C4[a,b],0≤i≤p-烅烄烆1的高阶矩阵线性微分方程初值问题的数值解.给出实现算法和数值解的近似误差估计以及数值实例.先将高阶矩阵微分方程转化为一阶矩阵微分方程,然后利用三次矩阵样条求出一阶矩阵线性微分方程的数值解,从而解决高阶微分方程问题.  相似文献   

13.
李森林 《数学学报》1960,10(1):1-21
<正> 設Y_n=a_ox~n+a_1x~(n-1)y+…+a_ny~n,X_n=b_ox~n+b_1x~(n-1)y+…+b_ny~n.其中Y_n,X_n无公因子.微分方程 y′=Y_n/X_n(1)只有一个奇点(0,0).当n=1时,Poincare决定了(1)的积分曲綫的拓扑結构.当n=2时,决定了(1)的积分曲綫的結构.当n=3时,张棣决定了(1)的积分曲綫  相似文献   

14.
导数已解出的一阶微分方程:y′=f(x,y)或p(x,y)dx Q(x,y)dy=0,其求解方法是:先判断方程是否是可解的已知类型.若是,用相应的方法求解;若不是,再通过适当的变量替换或积分因子,将方程化成已知类型后求解.下面举几个一题多解的例子,拓宽思路,以便寻求较为简单的解法.  相似文献   

15.
刘许成 《大学数学》2012,(1):132-136
二个自变量的二阶线性双曲型方程auxx+2buxy+cuyy+dux+euy+g=0,当系数a,b,c,d,e,g满足一定条件时,可以利用变换T:ξ=φ(x,y),η=ψ(x,y)化为一阶线性常微分方程求解,本文给出了求解定理和计算方法.  相似文献   

16.
本文将一阶微分方程中的Bernoulli方程dy/dx=P(x)y+Q(x)yn推广到一类一阶非线性方程dy/dx=Q(x)f(y)+P(x)f(y)·∫1/f(y)dy(其中1/f(y)可积)并得到其初等解法.  相似文献   

17.
刘树德 《工科数学》1998,14(2):155-156
在一般的高等数学或常微分方程教科书中,当求解形如[M1(x,y)dx N1(x,y)dy] [M2(x,y)dx N2(x,y)dy]=0 (1)的方程(或分成更多组)时,常采用分组求职分因子法,即先求出各组和积分因子,再设法找到方程(1)的统一的积分因子,此法的工作量和灵活性部较大,并且很难预知一定能解决问题,因此一般尽量避免使用.我们把通过分项组合而求得积分因子的方法统称为观察法,  相似文献   

18.
一类非线性微分方程组中心和焦点判定的简便方法   总被引:2,自引:0,他引:2  
本文讨论非线性微分方程组dxdt=-y +x F( x,y) ,dydt=x +y F( x,y)( 1 )在奇点 ( 0 ,0 )邻近积分曲线的结构 .得到了判定原点 ( 0 ,0 )是微分方程组 ( 1 )的焦点或中心的简便方法 .  相似文献   

19.
王建锋 《大学数学》2004,20(4):84-88
提出了高阶常系数非齐次线性微分方程y(n)+P1y(n-1)+…+Pny=f(x)(P1,P2,…,Pn是实数)的一种新解法.首先将该方程降为n个一阶非齐次线性微分方程组:y1′-w1y1=f(x),y2′-w2y2=y1,…………………yn′-wnyn=yn-1,其中w1,w2,…,wn是对应的齐次方程的特征方程tn+P1tn-1+…+Pn=0的n个根.然后求出它的通解y=yn,最后得出了求原方程一个特解的迭代公式.  相似文献   

20.
解一阶线性常微分方程的积分因子法   总被引:1,自引:0,他引:1  
一阶线性常微分方程 dy/dx P(x)y=Q(x)当已知函数Q(x)0时,称为非齐次方程,而当Q(x)0时,称为齐次方程。这种方程,通常可用多种方法求解,如Lagrange常数变易法,积分因子法,积分变换法,或者幂级数解法等。由于后面两种方法所用工具比较高深,在教学中一般安排较晚,本文暂不讨论。一般在微积分或微分方程教程中所采用的,多是常数变易法。为了说明问题,我们先简单介绍一下这个解法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号