首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe50Mn50. X-ray diffraction and transmission electron microscopy show that the Fe50Mn50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn(tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.  相似文献   

2.
A spin-polarized current changes the strength and direction of the exchange bias in spin valves with a current-in-plane geometry. The exchange bias can be manipulated and systematically changed by applying current pulses. The changes are nonmonotonic and asymmetric with respect to the directions of the applied field and current pulses. For different current pulses, different exchange-bias fields can be achieved in the same sample. Furthermore, for samples with different exchange bias, the bias field exhibits a dependence on the applied pulse. Since the strength of exchange bias is highly correlated to the micromagnetic state distribution of the antiferromagnet, we explain our observations by the spin torque exerted on the interfacial antiferromagnetic moments, excluding Joule heating and training effects.  相似文献   

3.
The exchange bias of the soft ferromagnet mu-metal, Ni77Fe14Cu5Mo4Ni77Fe14Cu5Mo4, with the metallic antiferromagnet Fe50Mn50Fe50Mn50 has been studied as a function of ferromagnet thickness and buffer layer material. Mu-metal exhibits classic exchange bias behavior: the exchange bias (HEB)(HEB) and coercive fields scale inversely with the ferromagnet's thickness, with HEB varying as the cosine of the in-plane applied field angle. Ta buffers, rather than Cu, allow the mu-metal to retain more of its soft magnetic character while exhibiting exchange bias. The ability to preserve soft ferromagnetic behavior in an exchange biased heterostructure may be useful for low field sensing and other device applications.  相似文献   

4.
Co-doped NiO inhomogeneous films were synthesized by sputtering metallic Co chips and NiO together and the exchange bias of bilayers Co-doped NiO/FeNi was investigated. When Co content was up to 25.2%, the exchange bias field HE at the room temperature increased to the maximum which was about three times compared to the undoped-bilayers. With further increase of Co content, the exchange bias field HE and blocking temperature TB decreased. Analysis suggests that the configuration of nanometer-sized Co-metal clusters enchased into NiO matrix played an important role in the change of magnetic behavior for the bilayers.  相似文献   

5.
The temperature dependence (50–300 K) of the magnetoresistance and exchange bias field of spin valves with a CoO exchange bias layer have been investigated. At room temperature the GMR effect is enhanced in comparison with spin valves with a FeMn biasing layer. This enhancement increases for decreasing temperature for small Cu thicknesses. No influence of the antiferromagnetism of CoO on the GMR has been observed upon crossing of the Néel temperature.  相似文献   

6.
For the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers, both negative and positive exchange bias HE have been observed for low and high cooling field HCF, respectively. The thickness dependence of HE and coercivity HC have been investigated for the cases of negative and positive HE. It is found that the negative HE and the positive one have similar FM thickness dependence that is attributed to the interfacial nature of exchange bias. However, the AFM thickness dependence of positive HE is completely contrary to that of the negative one, which clearly demonstrates that the AFM spins play different roles for the cases of positive and negative HE. In particular, the AFM thickness of positive HE was first highlighted by an AFM spin canting model. These results should be attributed to the interfacial spin configuration after field cooling procedure.  相似文献   

7.
Strong effects of ferromagnetic layer (FMCo, and Ni80Fe20) on the magnitude and blocking temperature of exchange coupling are observed in antiferromagnetic NiO-based films NiO (5 nm)/FM1 (t nm)/FM2 (6-t nm). The existence of interfacial spins configuration in glass-like state and FM anisotropy are proposed to interpret a minimum shown in thermal magnetization curves for films with strong exchange coupling effect. The microstructural change of FM layer and the long-range interaction of exchange bias are taken into account to explain a strong dependence of exchange coupling energy density on the thickness tF of FM layer when tF<5 nm.  相似文献   

8.
Excimer laser annealing (ELA) is a widely used technique for producing polycrystalline silicon (poly-Si) thin films. An optical inspection system with simple optical arrangements for rapid measurement of recrystallization results of poly-Si thin films is developed in this study. The recrystallization results after both frontside ELA and backside ELA can be easily visible from the profile of peak power density distribution using the optical inspection system developed with an optimized moving velocity of 0.312 mm/s of the specimen. The method of backside ELA is suggested for batch production of low-temperature polycrystalline silicon thin-film transistors due to higher laser beam utilization efficiency and lower surface roughness of poly-Si films.  相似文献   

9.
We have studied the effect of roughness on the exchanged biased NiFe/FeMn/NiFe trilayers system. The samples were prepared under three different argon working pressures (2, 5 and 10 mTorr) to obtain different roughness degrees. The root mean square roughness of the NiFe/FeMn interfaces enhances as the argon working pressure during the deposition increases from 2 to 10 mTorr. High-angle X-ray diffraction reveals that the samples have 1 1 1 texture and besides, possible changes in grain size could be an extra contribution to the interfacial roughness. Magnetometry measurements have shown that the coervive field enhances as the root mean square roughness of the NiFe/FeMn interfaces increases, while the dependence of the exchange bias field runs in the opposite way.  相似文献   

10.
A new method was developed to control Co film oxidation in an epitaxially grown Cu(wedge)/Co/Cu(0 0 1) film. By annealing the film at 200 °C within 10−6 Torr oxygen environment, we find that the top Cu wedge controls the Co underlayer oxidation continuously as a function of the Cu film thickness. Magneto-Optic Kerr Effect measurement shows that the exchange bias of the resulting CoO/Co film exhibits a systematic variation with the Cu thickness, thus offering a new method of tailoring the exchange bias of CoO/Co films.  相似文献   

11.
A series of polycrystalline Ag-doped Ni1−xAgxO/Ni bilayers with x up to 0.2 were prepared by magnetron sputtering. X-ray diffraction, atomic force microscopy and transmission electron microscopy analyses reveal that Ag doping significantly reduces the mean NiO grain size and leads to the appearance of Ag nanoparticles on the surface of the Ag-doped NiO films. As x increases, the exchange bias field and coercivity at room temperature decrease as a consequence of the reduced thermal stability of smaller NiO grains and the screening effect resulting from the interfacial Ag nanoparticles. At lower temperatures, a slight enhancement of the exchange bias field is observed in the Ag-doped sample, indicating that the Ag doping increases the uncompensated NiO spin density. In addition, our studies find that the training effect of the Ag-doped sample can be well described by a spin configurational relaxation model, regardless of the presence of Ag nanopartiles at the interface.  相似文献   

12.
We consider the models of ferromagnetic (FM)/antiferromagnetic (AFM) bilayers and trilayers and perform a modified Monte Carlo method to study their exchange bias (EB) properties at low temperature after field cooling on increasing one component thickness at the expense of the other one. The results indicate that EB is insensitive to the thickness variations as the FM layer is thicker than the AFM one. Otherwise, it has a steep increase with the decrease of FM thickness, but the purely inverse proportion is no longer valid due to the dual influences of FM and AFM thicknesses. EB in trilayers should be approximately twice larger than that in bilayers because there is a double interfacial area in the trilayers compared with the bilayers, but the dispersed FM/AFM distributions may break this relation as a result of thermal destabilization. Moreover, EB is independent of FM/AFM stacking sequences probably because of the ideal interface between them. It has been clarified unambiguously that such control of EB through varying the FM/AFM dimensions in heterostructures is attractive for spintronics applications.  相似文献   

13.
We present a new type of temperature driven spin reorientation transition (SRT) in thin films. It can occur when the lattice and the shape anisotropy favor different easy directions of the magnetization. Due to different temperature dependencies of the two contributions the effective anisotropy may change its sign and thus the direction of the magnetization as a function of temperature may change. Contrary to the well-known reorientation transition caused by competing surface and bulk anisotropy contributions the reorientation that we discuss is also found in film systems with a uniform lattice anisotropy. The results of our theoretical model study may have experimental relevance for film systems with positive lattice anisotropy, as e.g. thin iron films grown on copper.  相似文献   

14.
Epitaxial superlattices of ferromagnetic/paramagnetic La0.67Sr0.33MnO3/SrIrO3 materials have been prepared on SrTiO3 (100) substrate using pulse laser deposition technique. An unexpected onset of interface magnetic interaction has been observed around 40 K. Interestingly, magnetic exchange bias effect has been observed in both field cooled and zero field cooled magnetization loops, however, the shifting of loop is opposite in both measurements. Exchange bias field vanishes as temperature increases to interface magnetic ordering temperature. Moreover, exchange bias field is found to decrease with increasing cooling field. We believe that tuning of magnetic exchange at interface during field cooling induces this evolution in nature of exchange bias field.  相似文献   

15.
The exchange-bias (EB) properties of Mg-diluted Ni1−xMgxO/Ni (0?x?0.3) granular systems have been investigated. Magnetic dilution with Mg greatly affects the EB field and the coercivity. The temperature dependence of the EB field and the coercivity can be explained in terms of formation of domain states. The value of the EB field increases and shows a maximum value with increasing cooling field, which can be explained by the competition between the field-dependent Zeeman energy and the exchange interaction at the interface.  相似文献   

16.
We performed a systematic study on the exchange bias in (1 1 0)-orientated Bi0.9La0.1FeO3/La0.5Ca0.5MnO3 (BLFO/LCMO) heterostructure with a fixed BLFO film thickness of 600 nm and different LCMO layers ranging from t=0 to 30 nm. The LCMO is found to be weakly ferromagnetic, with the Curie temperature descending from ∼225 K to 0 as the layer thickness decreases from 30 nm to 3 nm. The main magnetic contributions come from the BLFO film, and the areal magnetization ratio is 1:0.07 for t=5 nm and 1:0.82 for t=30 nm for BLFO to LCMO at the temperature of 5 K. Further experiments show the presence of significant exchange bias, and it is, at the temperature of 10 K, ∼40 Oe for t=0 and ∼260 Oe for t=30 nm. The exchange bias reduces dramatically upon warming and disappears above the blocking temperature of the spin-glasslike behavior observed in the samples. The possible origin for exchange bias is discussed.  相似文献   

17.
We investigated magnetoresistance (MR) and exchange bias properties by annealing in the dual spin valve (SV) with nano-oxide layer (NOL). By analyzing effects of NOL in top and bottom pinned simple SVs, MR enhancement effect of NOL inserted in the bottom pinned layer was higher than that of NOL in the top pinned layer with annealing. By the enhanced specular scattering of electrons by NOL, the MR ratio of dual SV with NOL was increased to 15.5–15.9% with an annealing of 200–250°C. Exchange coupling constant Jex was improved rapidly as 0.13–0.16 erg/cm2 by annealing in the bottom pinned layer, whereas the effect of annealing was not large in the top pinned layer with Jex of about 0.09–0.116 erg/cm2.  相似文献   

18.
Yong Hu 《Physics letters. A》2010,374(25):2575-2579
For a ferromagnetic (FM)-antiferromagnetic (AFM) system with composition x(FM)+(AFM)1−x, a modified Monte Carlo Metropolis method is performed to study the effects of x and easy axes distribution at the FM/AFM nearest neighbors on exchange bias field HE, coercivity HC, and vertical magnetization shift ME after cooling under different magnetic fields hCF. When the orientations of easy axes are uniform, the x dependence of HE and ME undergo a non-monotonous to monotonous process with the increase of hCF, whereas HC shows a more complex behavior. On the other hand, for the case of the random orientation, HC has a peak around x=0.5, while ME decreases with the increase of x. HE exhibits negative extrema at small x and disappears for larger x. However, abnormal positive HE observed depends on the frustration and the distinct trends of two coercive fields with x in such a special model.  相似文献   

19.
Cadmium Oxide (CdO) thin films (d = 0.16−0.62 μm) were deposited onto glass substrates by thermal evaporation under vacuum (quasi closed volume technique) of high purity (99.99%) CdO polycrystalline powders. The substrate temperature was 300 and 473 K, respectively. After a post-deposition heat treatment, the temperature dependence of the electrical conductivity becomes reversible. The electronic transport mechanism in studied samples is explained in terms of Seto’s model for polycrystalline semiconducting films. The values of optical bandgap have been determined from absorption spectra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号