首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic hysteresis behavior of the oxide spinel MnCo2O4 has been studied at different temperatures below its Tc≈184 K. Normal hysteresis behavior is observed down to 130 K whereas below this temperature the initial magnetization curve, at higher magnetic fields, lies outside the main loop. No related anomaly is observed in the temperature variation of magnetization or coercivity. However, the anisotropy field overcomes the coercivity below 130 K. The unusual magnetic hysteresis behavior of MnCo2O4, at low temperatures, may be associated with irreversible domain wall movements due to the rearrangement of the valence electrons.  相似文献   

2.
Nanocrystalline Cr2O3 and NiO are prepared using high-energy ball milling. Average sizes of the particles obtained from Scanning Electron Microscopy and crystallite sizes obtained from X-ray diffraction are larger for Cr2O3 than NiO particles. At low temperature, large high-field magnetization and small coercivity lead to a weak exchange bias for Cr2O3, whereas small high-field magnetization and large coercivity lead to a considerable exchange bias for NiO. The training effect is observed for NiO at 4 K which could be described with a recursive formula constructed in the framework of the spin configurational relaxation model. The results suggest that the pinning mechanism at the interface between the antiferromagnetic and the weak ferromagnetic component ascribed to uncompensated spins leads to the exchange bias effect.  相似文献   

3.
Exchange-biased bilayers are widely used in the pinned layers of spintronic devices. While magnetic field annealing (MFA) was routinely engaged during the fabrication of these devices, the annealing effect of NiO/CoFe bilayers is not yet reported. In this paper, the transition from NiO/Co90Fe10 bilayer to nanocomposite single layer was observed through rapid thermal annealing at different temperatures under magnetic field. The as-deposited and low-temperature (<623 K) annealed samples had rock salt (NiO) and face center cubic (Co90Fe10) structures. On the other hand, annealing at 623 K and 673 K resulted in nanocomposite single layers composed of oxides (matrix) and alloys (precipitate), due to grain boundary oxidization and strong interdiffusion in the NiO/CoFe and CoFe/SiO2 interfaces. The structural transition was accompanied by the reduction of grain sizes, re-ordering of crystallites, incensement of roughness, and reduction of Ni2+. When measured at room temperature, the bilayers exhibited soft magnetism with small room-temperature coercivity. The nanocomposite layers exhibited an enhanced coercivity due to the changes in the magnetization reversal mechanism by pinning from the oxides. At 10 K, the increased antiferromagnetic anisotropy in the NiO resulted in enhanced coercivity and exchange bias in the bilayers. The nanocomposites exhibited weaker exchange bias compared with the bilayers due to frustrated interfacial spins. This investigation on how the magnetic properties of exchange-biased bilayers are influenced by magnetic RTA provides insights into controlling the magnetization reversal properties of thin films.  相似文献   

4.
包钴型r-Fe2O3磁粉各向异性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张林 《物理学报》1992,41(7):1167-1173
包钴型γ-Fe2O3磁粉的矫顽力可比原γ-Fe2O3磁粉提高8000—32000A/m。木文研究探讨了两种包钴型γ-Fe2O3磁粉(包钴γ-Fe2O3和包钴包亚铁γ-Fe2O3)的单轴各向异性的起源和矫顽力增大的机制。包钴γ-Fe2O3磁粉矫顽力 关键词:  相似文献   

5.
Magnetic nanocomposites formed by cobalt ferrite particles dispersed in a silica matrix were prepared by a sol-gel process. The effects of the thermal treatment temperature and the salt concentration on the structural and magnetic properties of the composites were investigated. By controlling these parameters, CoFe2O4/SiO2 nanocomposites with different crystallite size and magnetic properties were obtained. By increasing the annealing temperature and salt concentration, composites with a progressive increase in the coercive field and of the density of magnetization were produced. In particular, a nanocomposite, with a Fe/Si molar concentration of 21%, obtained by drying the gel at 150 °C and further annealing at 800 °C, has a coercivity of 2000 Oe, which is more than twice higher than the coercivity of bulk cobalt ferrite.  相似文献   

6.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   

7.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

8.
Magnetic nanoparticles of CoFe2O4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe2O4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder.  相似文献   

9.
NMR and susceptibility measurements have been made on a randomly mixed insulating ferrimagnet and antiferromagnet, MnxZn1-xCr2O4. The thermoremanence and the induced unidirectional anisotropy were observed for concentrations lower than x = 0.80, after field cooling. The compound Mn0.75Mg0.25Cr2O4 shows similar behaviour. When the latter is doped with V3+ at the B sites, its magnetic anisotropy increases strongly, but the change in the unidirectional anisotropy is smooth.  相似文献   

10.
We have fabricated exchange-biased Co/Pt layers ((0.3 nm/1.5 nm)×3) on (0 0 1)-oriented Cr2O3 thin films. The multilayered films showed extremely smooth surfaces and interfaces with root mean square roughness of ≈0.3 nm for 10 μm×10 μm area. The Cr2O3 films display sufficient insulation with a relative low leakage current (1.17×10−2 A/cm2 at 380 MV/m) at room temperature which allowed us to apply electric field as high as 77 MV/m. We find that the sign of the exchange bias and the shape of the hysteresis loops of the out-of-plane magnetized Co/Pt layers can be delicately controlled by adjusting the magnetic field cooling process through the Néel temperature of Cr2O3. No clear evidence of the effect of electric field and the electric field cooling was detected on the exchange bias for fields as high as 77 MV/m. We place the upper bound of the shift in exchange bias field due to electric field cooling to be 5 Oe at 250 K.  相似文献   

11.
包钴型γ-Fe2O3磁粉矫顽力的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
包钴型γ-Fe2O3磁粉分为包钴γ-Fe2O3(简记为Co-γ-Fe2O3)和包钴包亚铁γ-Fe2O3(简记为CoFe-γ-Fe2O3)两种,它们的矫顽力可比γ-Fe2O3磁粉的提高100至400Oe左右,本工作对这两种磁粉矫顽力增大的原因作了探讨,认为它们矫顽力增大的机制不同:CO-γ-Fe2O3矫顽力增大是由于表面包覆一层Co(OH)2使表面各向异性增大,而CoFe-γ-Fe2O3则是由于表面包覆的是钴铁氧体,γ-Fe2O3与钴铁氧体之间发生耦合作用,使矫顽力增大。  相似文献   

12.
The 0.1MFe2O4/0.9BiFeO3 (M=Co, Cu, Ni) nanocomposite samples were synthesized by the sol-gel method. Phase composition analysis was carried out, which showed that these bulk samples were composed of a ferrimagnetic MFe2O4 (M=Co, Cu, Ni) and a ferroelectric antiferromagnet (FEAF) BiFeO3 phases, respectively. The magnetic properties of all the samples were investigated by measuring their magnetization as a function of temperature and magnetic field. These results indicated that the magnetic hysteresis loops of 0.1CuFe2O4/0.9BiFeO3 sample sintered in air atmosphere at 550 °C for 3 h exhibited a negative shift and an enhanced coercivity at low temperature ascribed to strong exchange coupling between the BiFeO3 and CuFe2O4 grains. However, there were no magnetic hysteresis loops in both the 0.1CoFe2O4/0.9BiFeO3 sample and the 0.1NiFe2O4/0.9BiFeO3 sample. In view of these results, we tend to think the CuFe2O4/BiFeO3 nanocomposite system may be a useful multifunctional material.  相似文献   

13.
Core-shell-structured LiNi0.5La0.08Fe1.92O4-polyaniline (PANI) nanocomposites with magnetic behavior were synthesized by in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The structure, morphology and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis absorption, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) technique. The results of spectroanalysis indicated that there was interaction between PANI chains and ferrite particles. TEM study showed that LiNi0.5La0.08Fe1.92O4-PANI nanocomposites presented a core-shell structure with a magnetic core of 30-50 nm diameter and an amorphous shell of 10-20 nm thickness. The nanocomposites under applied magnetic field exhibited the hysteresis loops of the ferromagnetic nature. The saturation magnetization and coercivity of nanocomposites decreased with decreasing content of LiNi0.5La0.08Fe1.92O4. The polymerization mechanism and bonding interaction in the nanocomposites have been discussed.  相似文献   

14.
Magnetic nanocomposite SrFe12O19/Ni0.7Zn0.3Fe2O4 powders with different weight fractions of the Ni0.7Zn0.3Fe2O4 soft ferrite were synthesized by a combination of the sol–gel self-propagation and glyoxilate precursor methods. The results of magnetic measurements revealed the higher Mr/Ms ratio for the nanocomposites than that for the single phase SrFe12O19 which proves the existence of the intergrain exchange coupling between hard and soft magnetic phases with the exchange spring behavior. The highest Mr/Ms ratio of 0.63 was obtained in the composite consisting of 80 wt% of SrFe12O19 and 20 wt% Ni0.7Zn0.3Fe2O4. The microstructural studies of this sample exhibited the average dimensions of hard and soft phases about 20 nm and 15 nm, respectively which are small enough for strong exchange coupling according to the theoretical studies. The variations of the reduced remanence (Mr/Ms) with increasing the weight fraction of the soft phase could be also explained by the role of the exchange and dipolar interactions in tuning the magnetic properties of the nanocomposites.  相似文献   

15.
向军  沈湘黔  宋福展  刘明权 《中国物理 B》2009,18(11):4960-4965
NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol–gel assisted electrospinning.Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures.This paper investigates the thermal decomposition process,structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermogravimetric and differential thermal analysis,x-ray diffraction,Fourier transform infrared spectroscopy and field emission scanning electron microscopy.The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer.It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology gradually transforms from a porous structure to a necklace-like nanostructure with the increase of calcination temperature.The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000 C for 2 h are characterized by a necklace-like morphology and diameters of 100–200 nm.The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000 C.The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600 C.Due to the shape anisotropy,the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis.  相似文献   

16.
Cr2O3 nanoparticles of sizes from 24 to 12 nm were synthesized by mechanical grinding. Magnetic hysteresis loops were observed in the temperature range 5-300 K. Zero-field magnetization measurements showed two peaks, at low temperature in the range 36-52 K and at high temperature in the range 255-290 K. They were found to shift to higher temperatures as the particle size was reduced. This was ascribed due to the enhancement of the effective anisotropy constant with a decrease in particle size. The exchange bias was found to increase as the particle size became smaller. This is believed to arise due to an increase in uncompensated spins as a result of large surface area created.  相似文献   

17.
In this study, the effect of silane treatment of Fe3O4 on the magnetic and wear properties of Fe3O4/epoxy nanocomposites was investigated. Fe3O4 nanopowders were prepared by coprecipitation of iron(II) chloride tetrahydrate with iron(III) chloride hexahydrate, and the surfaces of Fe3O4 were modified with 3-aminopropyltriethoxysilane. The magnetic properties of the powders were measured on unmodified and surface-modified Fe3O4/epoxy nanocomposites using SQUID magnetometer. Wear tests were performed on unmodified and surface-modified Fe3O4/epoxy nanocomposites under the same conditions (sliding speed: 0.18 m/s, load: 20 N).The results showed that the saturation magnetization (Ms) of surface-modified Fe3O4/epoxy nanocomposites was approximately 110% greater than that of unmodified Fe3O4/epoxy nanocomposites. This showed that the specific wear rate of surface-modified Fe3O4/epoxy nanocomposites was lower than that of unmodified Fe3O4/epoxy nanocomposites. The decrease in wear rate and the increase in magnetic properties of surface-modified Fe3O4/epoxy nanocomposites occurred due to the improved dispersion of Fe3O4 into the epoxy matrix.  相似文献   

18.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

19.
Sequential pulsed laser deposition of CoO and CeO2 at 650 °C under vacuum leads to the formation of a slanted Co nanowires assembly embedded in CeO2/SrTiO3(0 0 1) epilayers. High temperature magneto-optical Faraday measurements were performed, which revealed a Faraday ellipticity of 1.3° at a wavelength of 450 nm for 300 nm thick samples and which allowed to access the magnetic properties. From the analysis of the coercivity dependence on temperature, it is shown that the magnetic anisotropy of the slanted Co nanowires is dominated by shape anisotropy and that their magnetization reversal is localized.  相似文献   

20.
A novel Cr2O3/TNTs nanocomposite was prepared by loaded suitable amount of amorphous Cr2O3 on titanate nanotubes (TNTs) via hydrothermal reaction and impregnation process. XRD, SEM and TEM results demonstrated that the amorphous Cr2O3 nanoparticles were homogeneously dispersed on the surface of TNTs. The diffuse reflectance UV–visible absorption spectra exhibited that the spectral response of TNTs was extended to visible light region by coupled with Cr2O3. The 2.5Cr2O3/TNTs nanocomposite showed the highest activity of hydrogen generation by photocatalytic water-splitting under visible light irradiation (λ > 400 nm). The high activity of H2 evolution for Cr2O3/TNTs nanocomposites was associated with the donor level in the forbidden band of TNTs semiconductor provided by dopant Cr3+ and a probably photocatalytic mechanism was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号