首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cr2O3 nanoparticles of sizes from 24 to 12 nm were synthesized by mechanical grinding. Magnetic hysteresis loops were observed in the temperature range 5-300 K. Zero-field magnetization measurements showed two peaks, at low temperature in the range 36-52 K and at high temperature in the range 255-290 K. They were found to shift to higher temperatures as the particle size was reduced. This was ascribed due to the enhancement of the effective anisotropy constant with a decrease in particle size. The exchange bias was found to increase as the particle size became smaller. This is believed to arise due to an increase in uncompensated spins as a result of large surface area created.  相似文献   

2.
《Solid State Ionics》1996,90(1-4):201-207
Properties of RbNO3 in (1 − x)RbNO3-xAl2O3 nanocomposites were studied by X-ray powder diffraction, electron diffraction, conductivity measurements, infrared and Raman spectroscopy, and differential scanning calorimetry. All the experimental techniques used indicate the presence of an amorphous RbNO3 layer at the RbNO3---Al2O3 interface in addition to a crystalline RbNO3 phase. Its concentration was determined from the phase transition enthalpies. The amorphous layer thickness estimated by means of a simple brick-wall model is 4 nm.  相似文献   

3.
Magnetic nanocomposite SrFe12O19/Ni0.7Zn0.3Fe2O4 powders with different weight fractions of the Ni0.7Zn0.3Fe2O4 soft ferrite were synthesized by a combination of the sol–gel self-propagation and glyoxilate precursor methods. The results of magnetic measurements revealed the higher Mr/Ms ratio for the nanocomposites than that for the single phase SrFe12O19 which proves the existence of the intergrain exchange coupling between hard and soft magnetic phases with the exchange spring behavior. The highest Mr/Ms ratio of 0.63 was obtained in the composite consisting of 80 wt% of SrFe12O19 and 20 wt% Ni0.7Zn0.3Fe2O4. The microstructural studies of this sample exhibited the average dimensions of hard and soft phases about 20 nm and 15 nm, respectively which are small enough for strong exchange coupling according to the theoretical studies. The variations of the reduced remanence (Mr/Ms) with increasing the weight fraction of the soft phase could be also explained by the role of the exchange and dipolar interactions in tuning the magnetic properties of the nanocomposites.  相似文献   

4.
Fe2O3/SiO2 nanocomposites were synthesized by mechanical alloying, using Fe and SiO2 powders as precursors. After 340 h milling, the sample essentially consists of hematite and amorphous silica. TEM images show hematite particles embedded in and surrounded by an amorphous silica matrix. A broad size distribution—5–50 nm—of hematite particles is found, and other group of very small—2–3 nm—unidentified particles are observed. Room temperature Mössbauer spectra show a paramagnetic doublet, which may correspond to a non-crystalline phase in the sample (probably the small unidentified particles), and a sextet corresponding to hematite. Magnetic properties were investigated by measuring hysteresis curves at different temperatures (5–300 K) and by zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves (10 mT). The hysteresis loops were well fitted by a ferromagnetic contribution. No evidence of Morin transition is found down to 5 K.  相似文献   

5.
CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol–gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.  相似文献   

6.
In the present study, the effects of B2O3 addition on the remanence properties of barium ferrite magnets are examined. The relationship between isothermal magnetization remanence MR(H) and demagnetization remanence MD(H) for non-interacting single domain particles, MD(H)=MR(Hmax)−2MR(H), was used in order to investigate the interactions between particles. We have found that remanence magnetization MR increased by 40% in magnitude with B2O3 addition in addition to the weakened couplings between particles. The B2O3 addition seems to supply the required conditions for usage of these materials in the magnetic recording media.  相似文献   

7.
Magnetic nanocomposites can be controlled and tailored to provide the desired mechanical, physical, chemical, and biomedical properties depending on the final applications. The coating of ferrite nanoparticles with polymers affords the possibility of minimizing agglomeration in large-scale commercial synthesis of nanocomposite materials. The process of coating not only provides effective encapsulation of individual nanoparticles, but also controls the growth in size, thus, yielding a better overall size distribution. In this paper, in-situ polymerization of aniline was carried out in different concentration of the ferrofluid with the aim to obtain agglomerate free nanocomposites. The role of the ferrite concentration was investigated by the spectral, morphological, conductivity, and magnetic properties of Fe3O4/polyaniline (PANI) nanocomposites. XRD revealed the presence of spinel phase of Fe3O4 and the particle size was calculated to be 14.3 nm. Spectral analysis confirmed the formation of PANI encapsulated Fe3O4 nanocomposite. Conductivity of the nanocomposites was found to be in the range of 0.001–0.003 S/cm. Higher saturation magnetization of 3.2 emu/g was observed at 300 K, revealing a super paramagnetic behavior of this nanocomposite.  相似文献   

8.
Melt-spun ribbons of Co69Fe7Si14B10 alloy have been prepared at different wheel speeds viz. 47, 34 and 17 m/s and investigated for structural and magnetic properties. Degree of amorphicity in the as-spun ribbons is found to increase with wheel speed. Amorphous phase crystallizes in two stages producing Co2Si, Co2B and CoSi phases on annealing. Increase in wheel speed improves soft magnetic and magnetoimpedance properties due to decrease in perpendicular anisotropy which is associated with stripe domain formation. On annealing soft magnetic properties and magnetoimpedance deteriorate due to the formation of crystalline phases.  相似文献   

9.
CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties.  相似文献   

10.
Epitaxial thin films of Fe3O4 and CoFe2O4 on MgO (0 0 1) substrates were grown by molecular beam epitaxy at low temperature growth process. Magnetization and hysteresis loop of both films were measured to investigate magnetic anisotropic properties at various temperatures. Anomalous magnetic properties are found to be correlated with crystalline, shape, and stress anisotropies. The Fe3O4 film below Verwey structural transition has a change in crystal structure, thus causing many anomalous magnetic properties. Crystalline anisotropy and anomalous magnetic properties are affected substantially by Co ions. The saturation magnetization of Co–ferrite film becomes much lower than that of Fe3O4 film, being very different from the bulks. It indicates that the low temperature growth process could not provide enough energy to have the lowest energy state.  相似文献   

11.
X. Wang  Y. Gao  H. Chen  Y. Chen  X. Liang  W. Lin  N.X. Sun 《Physics letters. A》2018,382(23):1505-1508
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200μm500μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.  相似文献   

12.
Single phase nanocrystalline YFeO3 has been synthesized by a simple solution method. The average particle diameter is 42.2 nm. The particles exhibit ferromagnetic behaviour in the temperature range 10-300 K with a coercivity of 23 kOe. The magnetization versus temperature over the temperature range 2-300 K obeys Bloch equation with a Bloch constant value 9.98×10−6 K−3/2. Ferromagnetic hysteresis loops have been observed up to a temperature of 300 K. At 10 K a field-cooled sample shows an exchange bias field.  相似文献   

13.
We report on the dielectric characterization of CoFe2O4-BaTiO3 nanocomposites grown by rf sputtering. Dielectric properties have been analyzed for samples grown at different deposition temperatures and with different thicknesses. Impedance spectroscopy data has been analyzed by fitting to an equivalent circuit and different contributions have been identified. Correlations between dielectric properties and deposition temperature and thickness have been established.  相似文献   

14.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.  相似文献   

15.
The 0.1MFe2O4/0.9BiFeO3 (M=Co, Cu, Ni) nanocomposite samples were synthesized by the sol-gel method. Phase composition analysis was carried out, which showed that these bulk samples were composed of a ferrimagnetic MFe2O4 (M=Co, Cu, Ni) and a ferroelectric antiferromagnet (FEAF) BiFeO3 phases, respectively. The magnetic properties of all the samples were investigated by measuring their magnetization as a function of temperature and magnetic field. These results indicated that the magnetic hysteresis loops of 0.1CuFe2O4/0.9BiFeO3 sample sintered in air atmosphere at 550 °C for 3 h exhibited a negative shift and an enhanced coercivity at low temperature ascribed to strong exchange coupling between the BiFeO3 and CuFe2O4 grains. However, there were no magnetic hysteresis loops in both the 0.1CoFe2O4/0.9BiFeO3 sample and the 0.1NiFe2O4/0.9BiFeO3 sample. In view of these results, we tend to think the CuFe2O4/BiFeO3 nanocomposite system may be a useful multifunctional material.  相似文献   

16.
Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites with different weight percentages of NiCuZn ferrite dispersed in silica matrix were prepared by microwave-hydrothermal method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiCuZn ferrite. The structure and morphology of the composites were studied using X-ray diffraction and scanning electron microscopy. The structural changes in these samples were characterized using Fourier Transform Infrared Spectrometer in the range of 400-1500 cm−1. The bands in the range of 580-880 cm−1 show a slight increase in intensity, which could be ascribed to the enhanced interactions between the NiCuZnFe2O4 clusters and silica matrix. The effects of silica content and sintering temperature on the magnetic properties of Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites have been studied using electron spin resonance and vibrating sample magnetometer.  相似文献   

17.
Co-Cu-Zn doped Fe3O4 nanoparticles can be successfully synthesized using a simple method. The particles in the size range 20−400 nm with different regular shapes i.e. sphere-like, regular hexane and tetrahedron are controllably achieved by changing the metal ion concentration. Compared to pure Fe3O4 without dopants, Co-Cu-Zn doped Fe3O4 nanoparticles exhibit better microwave absorbing properties at 2−18 GHz. Among three Co-Cu-Zn doped Fe3O4 nanoparticles with different morphologies, tetrahedral Co-Cu-Zn doped Fe3O4 nanoparticles represent a better dielectric loss in high frequency range. This work is believed the first known report of Co-Cu-Zn doped Fe3O4 nanoparticles with tunable morphology and magnetic properties through the hydrothermal process without using any organic solvents, organic metal salts or surfactants.  相似文献   

18.
The lean rare-earth Pr4.5Fe77−xTixB18.5 (x=0, 1, 4, 5) nanocomposite alloys were prepared by melt spinning method and subsequent thermal annealing. The effect of Ti content and annealing temperature on the magnetic properties and the microstructure of these magnets were investigated. The enhancing coercivity Hc from 211.4 to 338.2 kA/m has been observed at the optimal annealing temperature of 700 °C by the addition of 5 at% Ti in Pr2Fe14B/Fe3B alloys. It was also found that increasing Ti content leads to marked grain refinement in the annealed alloys, resulting in strong exchange-coupling interaction between the hard and the soft phases in these ribbons. In addition, the magnetization reversal behaviors of Pr2Fe14B/Fe3B nanocomposites were discussed in detail.  相似文献   

19.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

20.
Rod-like and platelet-like nanoparticles of simple-crystalline barium hexaferrite (BaFe12O19) have been synthesized by the molten salt method. Both particle size and morphology change with the reaction temperature and time. The easy magnetization direction (0 0 l) of the BaFe12O19 nanoparticles has been observed directly by performing X-ray diffraction on powders aligned at 0.5 T magnetic field. The magnetic properties of the BaFe12O19 magnet were investigated with various sintering temperatures. The maximum values of saturation magnetization (σs=65.8 emu/g), remanent magnetization (σr=56 emu/g) and coercivity field (Hic=5251 Oe) of the aligned samples occurred at the sintering temperatures of 1100 °C. These results indicate that BaFe12O19 nanoparticles synthesized by the molten salt method should enable detailed investigation of the size-dependent evolution of magnetism, microwave absorption, and realization of a nanodevice of magnetic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号