首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetic and heat capacity measurements have been carried out on the polycrystalline Gd1−xScxNi2 solid solutions (0≤x≤1), which crystallize in the cubic C15 Laves phases superstructure (space group F4?3m). These solid solutions are ferromagnetic with a Curie temperature below 76 K. Their Curie temperature decreases from 75.4 K for GdNi2 to 13.6 K for Gd0.2Sc0.8Ni2. At high temperatures, all solid solutions, except ScNi2, are Curie-Weiss paramagnets. The Debye temperature as well as phonon, conduction electron and magnetic contributions to the heat capacity have been determined from heat capacity measurements. The magnetocaloric effect has been estimated both in terms of isothermal magnetic entropy change and adiabatic temperature change for selected solid solutions in magnetic fields up to 3 T.  相似文献   

2.
The structure and magnetostriction of the (Tb1−xDyx)0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 intermetallic compounds (0≤x≤1) were studied by X-ray diffraction and magnetic measurements. The formation of an approximate single Laves phase with a MgCu2-type cubic structure was observed in this series of compounds. It was found that the Curie temperature and the saturation magnetization of the compounds would decrease with increase in the Dy content up to x=1. The magnetostriction λa (λa=λ-λ) gently rises when x≤0.6, and follows with a precipitous fall when x exceeds 0.6, with the highest value of λa being reached in the compounds with x=0.6. The magnetostriction of all the samples was observed to approach their own saturation in the magnetic fields higher than 4 kOe. This indicates that the addition of a small amount of Dy could effectively improve the low-field magnetostriction of the Tb0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 compounds, which could become a kind of promising magnetostrictive material.  相似文献   

3.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed.  相似文献   

4.
Bi0.8La0.2Fe1−xCoxO3 nanoparticles of single phase (BLFCOx, x=0, 0.005, 0.01, 0.02) were prepared by a sol-gel method using polyvinyl alcohol as a surfactant. Co substitution at Fe site improved further dielectric properties of Bi0.8La0.2FeO3 nanoparticles in the frequency range below 25 MHz at room temperature. Magnetization at 10 kOe, coercivities, and remanence of BLFCOx nanoparticles increased with increasing Co content. It is interesting that the hysteresis loop of all the BLFCOx nanoparticles presented a wasp-waisted shape. The property can open an important way to design new multiferroic applications of low hysteresis loss in low magnetic fields.  相似文献   

5.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

6.
Ni-rich Heusler alloys Ni52Mn48−xInx (x=15.5, 16 and 16.5) were prepared by the arc melting method. X-ray diffraction analysis revealed that the martensite has orthorhombic structure (S.G. Pmm2) at room temperature. The only alloy with x=15.5 has structural transmission from martensite to austenite without any magnetic transmission. The temperature dependence and the field dependence of the magnetization measurement indicated that the magnetization increased with the decreasing of the concerntration of Mn. The lesser the Mn atoms located in the In atom sites, the weaker the total AFM interaction in the system. Giant entropy changes ΔSM(T, H) were found in Ni52Mn48−xInx alloys with the maximum ΔSM value of 22.3 J kg K for the sample with x=16.5 at 270 K under the magnetic field change of 1.5 T.  相似文献   

7.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

8.
We report the effects of Al doping on the structure, magnetic properties, and magnetocaloric effect of antiperovskite compounds Ga1−xAlxCMn3 (0≤x≤0.15). Partial substitutions of Al for Ga enhance the Curie temperature (from 250 K for x=0.0 to 312 K for x=0.15) and the saturation magnetization. On increasing the doping level x, the maximum values of the magnetic entropy change (−ΔSM) decreases while the temperature span of ΔSM vs. T plot broadens. Furthermore, the relative cooling power (RCP) is also studied. For 20 kOe, the RCP value tends to saturate at a high doping level (for x=0.12, 119 J/kg at 296 K). However, at 45 kOe, the RCP value increases quickly with increasing x (for x=0.15, 293 J/kg at 312 K). Considering the relatively large RCP and inexpensive raw materials, Ga1−xAlxCMn3 may be alternative candidates for room-temperature magnetic refrigeration.  相似文献   

9.
Structural, magnetic properties and magnetostriction studies of Sm1−xNdxFe1.55 (0≤x≤0.56) alloys have been performed. X-ray diffraction analysis confirms the presence of single cubic Laves phase in Sm1-xNdxFe1.55 alloys with 0≤x≤0.48. The lattice parameter of alloys increases linearly with increase in Nd content while the Curie temperature behaves in the opposite way. The alloy x=0.08 exhibits a giant magnetostriction value (λ-λ) of −2187 ppm at a magnetic field of 12 kOe due to the anisotropy compensation between Sm3+ and Nd3+ ions.  相似文献   

10.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

11.
MCu2O3 (M=Ca and Co) system has two-leg spin ladder structure similar to that of the prototype SrCu2O3 system except that the rungs are buckled with an angle of 123° and 105° for CaCu2O3 and CoCu2O3 compounds, respectively. We have synthesized powder samples of (Ca1−xCox)Cu2O3 (x=0.00-1.00) by the solid state reaction method and their structural and magnetic properties have been investigated. All the synthesized compounds crystallize in orthorhombic structure with space group Pmmn. Lattice parameters of (Ca1−xCox)Cu2O3 decrease with the increase in Co content. DC magnetic susceptibility χ(T) results of the end products CaCu2O3 and CoCu2O3 show antiferromagnetic transition (TN) at 27 and 215 K, respectively. Co doping into (Ca1−xCox)Cu2O3 enhances its TN systematically with increasing Co concentration. The χ(T) of CoCu2O3 shows a broad transition with the peak temperature around 215 K and it was found to be field independent up to 90 kOe. The ambiguity concerning the transition was ruled out by recording the temperature dependent X-ray diffraction pattern on CoCu2O3 system, which indicated that there is no structural transition in the investigated temperature range of 115-300 K. Further, specific heat measurement on CoCu2O3 confirms the magnetic phase transition by the appearance of a sharp peak at 215 K.  相似文献   

12.
Synthesis by arc melting, the structural and the electric properties of Y(Co1−xNix)2 alloys were studied by X-ray diffraction (XRD) and four probe dc electrical measurements. XRD analysis (300 K) shows that all samples crystallize in a cubic MgCu2-type structure. The lattice parameters linearly decrease with Ni content. Electrical resistivity for the Y(Co1−xNix)2 intermetallic series was measured in a temperature range of 15-1100 K. The parameters involved in the dependence of resistivity on temperature were determined. Residual, phonon and spin fluctuations resistivity were separated from electrical resistivity using both the Matthiesen formula and the Bloch-Gruneisen formula. The spin fluctuations resistivity of the Y(Co1−xNix)2 series are compared to the mean square amplitudes of spin fluctuations previously calculated by the Linear Muffin Tin Orbital-Tight Binding Approach method for these series in the literature. The contribution of spin fluctuations to total resistivity ρsf is proportional to T2 at low temperatures. The proportionality parameter strongly reduces across the Y(Co1−xNix)2 series.  相似文献   

13.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

14.
We report on the structural and magnetic properties of nanoparticles of MnxCo1−xFe2O4 (x=0.1, 0.5) ferrites produced by the glycothermal reaction. From the analysis of XRD spectra and TEM micrographs, particle sizes of the samples have been found to be about 8 nm (for x=0.1) and 13 nm (for x=0.5). The samples were characterized by DC magnetization in the temperature range 5-380 K and in magnetic fields of up to 40 kOe using a SQUID magnetometer. Mössbauer spectroscopy results show that the sample with higher Mn content has enhanced hyperfine fields after thermal annealing at 700 °C. There is a corresponding small reduction in hyperfine fields for the sample with lower Mn content. The variations of saturation magnetization, remnant magnetization and coercive fields as functions of temperature are also presented. Our results show evidence of superparamagnetic behaviour associated with the nanosized particles. Particle sizes appear to be critical in explaining the observed properties.  相似文献   

15.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

16.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

17.
In the paper an influence of Gd/Y substitution on the magnetic properties and exchange interactions of the YxGd1−xNi3 (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) polycrystalline compounds have been studied. The partial replacement of Gd by Y atoms is reflected in decreasing of the Curie temperature (TC) as well as decreasing of effective the magnetic moment (μeff). It has been shown that such a behaviour strongly depends on the magnetic interactions. Exchange coupling parameters of R–R (ARR), T–T (ATT) and R–T (ART) have been evaluated from M(T) magnetization curves (2–300 K, 2 T) based on the mean field theory (MFT) calculation. The magnetocaloric effect (MCE) has been estimated from the family of magnetic isotherms. The magnetic entropy indicates relatively small change with the Gd/Y substitution. The value of ΔSm(T,H) is higher for Gd-rich compounds and, respectively, decreases with Gd/Y substitution.  相似文献   

18.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

19.
The Tb0.29(Dy1−xPrx)0.71Fe1.97 (x=0, 0.1, 0.2 and 0.3) alloys were prepared by directional solidification method. The orientation, magnetostriction λ, Curie temperature Tc and microstructure of alloys were characterized by XRD, standard resistant strain gauge technique, VSM and SEM-EDS. The results reveal that the alloys have a preferred orientation of 〈1 1 0〉 and 〈1 1 3〉 direction when x>0. With the increase in Pr content, the Tc of alloys decreases gradually and the non-cubic phase appears, resulting in the decline of λ dramatically, from 1935.2×10−6 for x=0 to 695.9×10−6 for x=0.3 at a compressive stress of 6 MPa and a magnetic field of H=240 kA m−1.  相似文献   

20.
We report results on the structural and magnetic properties of the CoxNi1−xTa2O6 series of compounds by X-ray powder diffraction, magnetic susceptibility and magnetization measurements. X-ray refinements carried out by the Rietveld method show that these compounds crystallize in a P42/mnm tetragonal structure. Magnetic susceptibility curves show a broadened maximum witnessing that these compounds exhibit two-dimensional antiferromagnetic behaviors. All the CoxNi1−xTa2O6 compounds order below 10 K and present a large ion anisotropy. The magnetic properties have been determined in both the paramagnetic and antiferromagnetic state. In the hypothesis of two dimensional AF ordering, the near neighbor exchange constants (J1) and the next near neighbor exchange constants for two different paths (J2 and J'2) were determined. The composition dependence of the magnetic properties including ordering temperature, exchange constants and anisotropy factors are discussed. The drastic reduction of the ordering temperature for x=0.20 for CoxNi1−xTa2O6, suggest the hypothesis of a peculiar magnetic behavior for this composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号