首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CoFe2O4 ferrite nanoparticles were prepared by a modified chemical coprecipitation route. Structural and magnetic properties were systematically investigated. X-ray diffraction results showed that the sample was in single phase with the space group . The results of field-emission scanning electronic microscopy showed that the grains appeared spherical with diameters ranging from 20 to 30 nm. The composition determined by energy-dispersive spectroscopy was stoichiometry of CoFe2O4. The Curie temperature in the process of increasing temperature was slightly higher than that in the process of decreasing temperature. This can be understood by the fact that heating changed Co2+ ion redistribution in tetrahedral and in octahedral sites. The coercivity of the synthesized CoFe2O4 samples was lower than the theoretical values, which could be explained by the mono-domain structure and a transformation from ferrimagnetic to superparamagnetic state.  相似文献   

2.
CoFe2O4 nanoparticles with a cubic spinel structure are prepared by a high-temperature thermal decomposition method. The average particle sizes are 4.6  and 5.7 nm for CoFe2O4 made with two kinds of solvents by TEM. Mössbauer spectra of 4.6 nm particles displayed a superparamagnetic behavior as demonstrated by a single line with zero hyperfine fields, but that of 5.7 nm particles did not at room temperature. It is considered that anisotropy energy was still more superior to thermal energy because of particle size of 5.7 nm CoFe2O4. Furthermore, Mössbauer spectra exhibited the typical spectrum shapes of the CoFe2O4 at 4.2 K. The spectrum at 4.2 K was fitted using two magnetic components of hyperfine fields Hhf=540.4,512.6Hhf=540.4,512.6 kOe and isomer shifts δ=0.40,0.30δ=0.40,0.30 mm/s for 4.6 nm and Hhf=542.7,512.8Hhf=542.7,512.8 kOe and δ=0.41,0.29δ=0.41,0.29 mm/s for 5.7 nm corresponding to Fe3+ ions at site A and site B, respectively.  相似文献   

3.
Fe3O4 nanowire arrays with different diameters of D=50, 100, 150 and 200 nm were prepared in anodic aluminum oxide (AAO) templates by an electrodeposition method followed by heat-treating processes. A vibrating sample magnetometer (VSM) and a Quantum Design SQUID MPMS magnetometer were used to investigate the magnetic properties. At room temperature the nanowire arrays change from superparamagnetism to ferromagnetism as the diameter increases from 50 to 200 nm. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements show that the blocking temperature TB increases with the diameter of nanowire. The ZFC curves of D=50 nm nanowire arrays under different applied fields (H) were measured and a power relationship between TB and H were found. The temperature dependence of coercivity below TB was also investigated. Mössbauer spectra and micromagnetic simulation were used to study the micro-magnetic structure of nanowire arrays and the static distribution of magnetic moments of D=200 nm nanowire arrays was investigated. The unique magnetic behaviors were interpreted by the competition of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles in nanowires.  相似文献   

4.
5.
Antiferromagnetic Co3O4 nanoparticles with diameter around 30 nm have been synthesized by a solution-based method. The phase identification by the wide-angle X-ray powder diffraction indicates that the Co3O4 nanoparticle has a cubic spinel structure with a lattice constant of 0.80843(2) nm. The image of field emission scanning electron microscope shows that the nanoparticles are assembled together to form nanorods. The magnetic properties of Co3O4 fine particles have been measured by a superconducting quantum interference device magnetometer. A deviation of the Néel temperature from the bulk is observed, which can be well described by the theory of finite-size scaling. An enhanced coercivity as well as a loop shift are observed in the field-cooled hysteresis loop. The exchange bias field decreases with increasing temperature and diminishes at the Néel temperature. The training effect and the opening of the loop reveal the existence of the spin-glass-like surface spins.  相似文献   

6.
7.
Co1−xZnxFe2O4 nanoparticles were prepared by co-precipitation method with x varying from 0 to 1.0. The powder samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). The average crystallite sizes of the particles were determined from XRD. X-ray analysis showed that the samples were cubic spinel. The average crystallite size (DaveXR) of the particles precipitated was found to vary from 6.92 to 12.02 nm decreasing with the increase in zinc substitution. The lattice constant (ao) increased with the increase in zinc substitution. The specific saturation magnetization (MS) of the particles was measured at room temperature. The magnetic parameters such as MS, Hc, and Mr were found to decrease with the increase in zinc substitution. FTIR spectra of the Co1−xZnxFe2O4 with x varying from 0 to 1.0 in the range 400–4000 cm−1 were reported. The spinel structure and the crystalline water adsorption of Co1−xZnxFe2O4 nanoparticles were studied by using FTIR.  相似文献   

8.
We have investigated the influence of composition and annealing conditions on the magnetic properties and microstructural features of SmCox films that were prepared by sputtering and subsequent annealing. A huge in-plane coercivity of 5.6 T was obtained from an optimally annealed Sm–Co film, which was attributed to the nanometer sized polycrystalline microstructure of the highly anisotropic SmCo5 phase. Although a high density of planar defects were observed in the films that were annealed at high temperatures, they did not act as strong pinning sites for domain wall motion. The effect of Cu on [SmCo4.5(9 nm)/Cu(xnm)]10 multilayer thin films was also studied. An appropriate Cu content increased the coercivity.  相似文献   

9.
The linear and nonlinear low field AC susceptibilities of Zn0.75Co0.25Fe0.5Cr1.5O4 show peaks due to non-critical contributions, which mask the peak due to spin glass ordering. They extend into the region of temperatures in which Mössbauer spectra do not show any magnetic component. When a DC field of 200 Oe suppresses the non-critical contributions, peak due to spin glass ordering is clearly visible. The spin glass ordering is thus shown to be a thermodynamic transition. The critical exponent is found to fall within the range found using other spin glasses. Mössbauer spectra in zero fields provide TSG, which agrees with the peak temperature of AC susceptibilities in the absence of non-critical contributions. 〈SZ〉 determined using Mössbauer spectra does not show any anomaly. In the presence of a field of 5 T, the spectra show SG ordering at 4.2 K, which converts into ferrimagnetic ordering at higher temperatures.  相似文献   

10.
Core/shell nanoparticles consisting of a magnetic core of zinc-substituted manganese ferrite (Mn0.4Zn0.6Fe2O4) and a shell of silica (SiO2) are prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) as a precursor material for silica and salts of iron, manganese and zinc as the precursor of the ferrite. Three weight percentages of the shell materials of SiO2 are used to prepare the coated nanoparticles. The X-ray diffractograms (XRD) of the coated and uncoated magnetic nanoparticles confirmed that the magnetic nanoparticles are in their mixed spinel phase in an amorphous matrix of silica. Particles sizes of the samples annealed at different temperatures are estimated from the width of the (3 1 1) line of the XRD pattern using the Debye-Sherrer equation. The information regarding the crystallographic structure together with the particles sizes extracted from the high-resolution transmission electron microscopy (HRTEM) of a few selected samples are in agreement with those obtained from the XRD. HRTEM observations revealed that particles are coated with silica. The calculated thickness is in agreement with that obtained from the HRTEM pictures. Hysteresis loops observed in the temperature range 300 down to 5 K and Mössbauer spectra at room temperature indicate superparamagnetic relaxation of the nanoparticles.  相似文献   

11.
The effects of the precursor types of Ni and Fe components on the morphology, mean size, and magnetic property of NiFe2O4 powders prepared by spray pyrolysis from the spray solution, with citric acid were studied. The precursor powders with hollow and thin wall structure turned to the nano-sized NiFe2O4 powders after post-treatment at a temperature of 800 °C. The nickel ferrite powders obtained from the spray solution with ferric chloride had nanometer sizes and narrow size distributions irrespective of the types of nickel precursor. The nickel ferrite powders obtained from the spray solution with ferric nitrate and nickel chloride also had nanometer size and narrow size distribution. The saturation magnetizations of the NiFe2O4 powders changed from 37 to 42 emu/g according to the types of the Fe and Ni precursors. The saturation magnetizations of the NiFe2O4 powders increased with increasing the Brunauer-Emmett-Teller (BET) surface areas of the powders.  相似文献   

12.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

13.
Ablation of Fe3O4 targets has been performed using a pulsed UV laser (KrF, λ = 248 nm, 30 ns pulse duration) onto Si(100) substrates, in reactive atmospheres of O2 and/or Ar, with different oxygen partial pressures. The as-deposited films were characterised by atomic force microscopy (AFM), X-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and extraction magnetometry, in order to optimise the deposition conditions in the low temperature range. The results show that a background mixture of oxygen and argon improves the Fe:O ratio in the films as long as the oxygen partial pressure is maintained in the 10−2 Pa range. Thin films of almost stoichiometric single phase polycrystalline magnetite, Fe2.99O4, have been obtained at 483 K and working pressure of 7.8 × 10−2 Pa, with a high-field magnetization of ∼490 emu/cm3 and Verwey transition temperature of 112 K, close to the values reported in the literature for bulk magnetite.  相似文献   

14.
ZnFe2O4 nanoparticles with average grain size ranging from 40 to 60 nm behaving superparamagnetic at room temperature have been produced using a low-temperature solid-state reaction (LTSSR) method without ball-milling process. Abnormal magnetic properties such as S-shape hysteresis loops and non-zero magnetic moments were observed. ZnFe2O4 nanoparticles were also synthesized using a NaOH coprecipitation method and a PVA sol-gel method to study the relationship between the preparation processes and the magnetic properties. Spin-glass behavior was observed in the low temperature solid-state reaction produced Zn ferrite in the zero-field cooled (ZFC) measurement. Our work proves that the various preparation methods will to some extent determine the properties of magnetic nanoparticles.  相似文献   

15.
16.
The magnetic properties of Mg0.95Mn0.05Fe2O4 ferrite samples with an average particle size of ∼6.0±0.6 nm have been studied using X-ray diffraction, Mössbauer spectroscopy, dc magnetization and frequency dependent real χ(T) and imaginary χ(T) parts of ac susceptibility measurements. A magnetic transition to an ordered state is observed at about 195 K from Mössbauer measurements. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization have been recorded at low field and show the typical behavior of a small particle system. The ZFC curve displays a broad maximum at , a temperature which depends upon the distribution of particle volumes in the sample. The FC curve was nearly flat below , as compared with monotonically increasing characteristics of non-interacting superparamagnetic systems indicating the existence of strong interactions among the nanoparticles. A frequency-dependent peak observed in χ(T) is well described by Vogel-Fulcher law, yielding a relaxation time and an interaction parameter . Such values show the strong interactions and rule out the possibility of spin-glass (SG) features among the nanoparticle system. On the other hand fitting with the Néel-Brown model and the power law yields an unphysical large value of τ0 (∼6×10−69 and 1.2×10−22 s respectively).  相似文献   

17.
Nanocrystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x=0, 0.2, 0.4), were for the first time prepared by forced hydrolysis method. Magnetic and structural properties in these specimens were investigated. The average crystallite size is about 3.0 nm. When the zinc substitution increases from x=0 to x=0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g and the coercive field decreases from 1.22 to 0.71 T. All samples are superparamagnetic at room temperature and ferrimagnetic at temperatures below the blocking temperature. The high value of the saturation magnetization and the very thin thickness of the disorder surface layer of all samples suggests that this forced hydrolysis method is suitable not only for preparing two metal element systems but also for three or more ones.  相似文献   

18.
Nanocrystalline Cobalt chromite (CoCr2O4) ceramic has been synthesized under a mild condition, rather than by a high-temperature sintering (e.g. >1673 K, in general). A shifted hysteresis loop with an exchange-bias field of 35.7 kA/m and a high coercivity of 627.9 kA/m at 4.2 K was achieved under the cooling field of 2.39×106 A/m. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results reveal that a strong lattice distortion and a large amount of surface defects exist in CoCr2O4 nanocrystallites (NCs). The anomalous magnetic properties, such as bias field and large coercivity, are attributed not only to the nanosize effect but also to the lattice distortion and crystal defects.  相似文献   

19.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

20.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at % of Ti results in an increase of coercivity from 796 to 1115 kA m−1. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA m−1. Mössbauer investigations shows that for x?1 the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x>1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity decreases due to the presence of an amorphous phase. A heat treatment at a higher temperature (1073 K) for longer time (1 h) results in the full recrystallisation of powders. The mean hyperfine field of the Nd2Fe14B phase decreases for titanium contents of 0?x?1, and remains constant for x>1. This indicates that the Ti content in the Nd2Fe14B phase reaches its maximum value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号