首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a kind of soft magnetic metallic material, flaky FeSiAl powders have been studied and used widely. Transition metal chromium can improve the magnetic properties of FeSiAl. This article prepared Fe85Si9.5-xAl5.5Crx (x=0, 2, 4, 6 wt%) alloys powders by adding chromium to replace silicon in alloys. The morphology and microstructure of alloys powders were studied, electromagnetic parameters were measured and microwave absorption properties in the frequency range from 0.5 to 18 GHz were analyzed. With the increase of Cr content, α-Fe (Al, Si) superlattice phases appeared in alloys powders, and then disappeared. Excessive Cr precipitated from the alloys when its content reaches 6 wt%. The minimum reflection loss (-20 dB) among the four powders was 2 wt% Cr content at the frequency of 11.5 GHz. The peaks of reflection loss shifted to the low frequency range with increase in Cr content.  相似文献   

2.
In order to increase the electromagnetic parameters and improve the microwave absorbing properties in the range of 1–4 GHz, gas atomized Fe-50 wt%Ni alloys with spherical form were processed in a planetary mill. The morphology, phase composition and saturation magnetization of the FeNi alloy particles were investigated by means of scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer. The complex permittivity, complex permeability and reflection loss of the microwave absorbing material made from Ethylene–Propylene–Diene Monomer rubber, and the Fe-50 wt%Ni alloys were also studied using vector network analyzer and transmission line theory. The results show that the shape of the atomized Fe-50 wt%Ni powders can be modified by mechanical milling. The flaky Fe-50 wt% Ni particles were prepared, and the aspect ratio increases with increasing the milling time from 10 to 30 h. Mechanical milling does not change the phase compositions of the FeNi alloys but decreases the peak intensity and broadens the peak width. The saturation magnetization decreases and the coercivity increases as the milling time increases. The electromagnetic parameters and microwave absorbing properties are enhanced with the increase of the aspect ratio. The rubber absorbers filled with flaky Fe-50 wt%Ni powders milled for 30 h exhibit the low reflection loss in the 1–4 GHz frequency range.  相似文献   

3.
The surface of carbonyl iron powder or a mixture of carbonyl iron and ferrite was coated with polymethylmethacrylate (PMMA) microspheres by a hybridization method to make hybrid powders, and then electromagnetic wave absorption properties of the hybrid composites prepared with these hybrid powders have been investigated. As for the carbonyl iron/PMMA hybrid composite, the reflection loss less than −20 dB could be achieved in a frequency range of 1.7–5.0 GHz when the composite thickness was below 5.00 mm. In the case of the carbonyl iron-ferrite/PMMA hybrid composite, a similar reflection loss was observed in a frequency range of 4.3–13.0 GHz. Thus, the addition of ferrite was found to be useful for achieving a large absorption in a wide frequency range, especially for higher frequency values. Simulated values for the minimum reflection loss are well agreed with actually measured ones, because of homogeneous distribution of carbonyl iron and/or ferrite in these hybrid composites.  相似文献   

4.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

5.
Composite membranes (with thickness around 100–200 μm) containing highly in-plane aligned Sendust flakes embedded in polyvinyl alcohol matrix were prepared with a novel infiltration method. As compared with tape-casting method, infiltration method results in enhanced magnetic permeability, which could be caused by better alignment and less porosity. Annealing process could modify the grain size, improve saturation magnetization and coercivity of Sendust flakes. Hence, the radio and quasi-microwave frequency permeability (between 10 MHz to 3 GHz) of composites membranes with annealed Sendust flakes could be enhanced significantly as compared with that of the as-prepared flakes. Infiltration method is especially suitable for composites with high concentration of flaky fillers. The composite membranes prepared have potential applications, including electromagnetic shielding, noise reduction and wave absorption.  相似文献   

6.
In this work, the soft magnetic composites (SMCs) of the nanocrystalline Fe-5 wt% Ni powders coated with phenolic resin were studied. The nanocrystalline powders with an average diameter of 10 nm were obtained by mechanical alloying up to 96 h milling in a high-energy planetary ball mill. The microstructure and magnetic properties of the milled powders were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and a vibrating sample magnetometer. The results of X-ray diffraction showed that the bcc Fe(Ni) solid solution is formed after 24 h milling. Magnetic measurements indicated that the 96 h milled powders with a steady-state grain size of 10 nm have the highest saturation magnetization and the lowest coercivity. The SMCs based on nanocrystalline powders showed higher electrical resistivity and magnetic permeability up to 1 MHz, as compared with the pure iron-based composites. Besides, the nanocrystalline-based SMCs exhibited higher relaxation frequency and a significantly lower loss factor up to 1 MHz.  相似文献   

7.
The microwave-absorbing properties for different shapes of carbonyl-iron particles prepared by the high-energy planetary ball milling with 40 vol% in epoxy resin matrix have been investigated. Higher value of magnetic permeability and permittivity can be obtained in the composites for thin flake carbonyl iron than spherical powders. The results are attributed to reduction of eddy current loss, orientation of magnetic moment and space-charge polarization with the shape change from spherical powders to thin flake particles. As the iron flakes with 0.4 μm in thickness as the absorbent fillers, the minimum RL value of −6.20 dB was observed at 4.57 GHz with thickness of 1 mm. The minimum reflection loss (RL) shifts to lower frequency and the value declines with change from spherical powders to thin flakes. It results from the considerable dielectric loss in the absorbing materials.  相似文献   

8.
The microwave absorption properties of nanosized double perovskite Sr2FeMoO6 and epoxy resin composites were investigated in the frequency range of 2-18 GHz using the coaxial method. The Sr2FeMoO6 composites with an optimal 20 wt% epoxy resin showed a strong electromagnetic attenuation of −49.3 dB at 8.58 GHz with a matching thickness of 2.15 mm. Moreover the optimum absorption frequency at which the reflection loss is less than −20 dB, which corresponds to 99% reflection loss of the incident microwave, is from 5.7 to 13.2 GHz with the matching thickness ranging from 3.0 to 1.5 mm. The excellent microwave-absorption properties are a consequence of a proper electromagnetic match due to the existence of the insulating matrix of anti-site defects and anti-phase domains, which not only contribute to the dielectric loss but also to the reduced eddy current loss.  相似文献   

9.
Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.  相似文献   

10.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

11.
FeNi thin films were fabricated by radio frequency magnetron sputtering on Si(1 1 1). Dynamic properties at remanence of the films were systematically investigated in a wide frequency range from 100 MHz to 5 GHz. The results show that both thickness of FeNi films and oblique angle have important effects on the magnetic properties of the films, the magnetic resonant frequency of the films can also be adjusted by the two factors. The in-plane uniaxial magnetic anisotropy field can be adjusted from 82 Oe to 220 Oe by increasing the oblique angle. As a consequence, the magnetic resonant frequency of the films increased from 2.7 GHz to 4.2 GHz.  相似文献   

12.
The electromagnetic and microwave absorption properties of the composites employing FeSi alloy powders with different particle sizes as absorbent and paraffin as matrix were investigated. The results showed that the particle size had significant influence on the electromagnetic and microwave absorption properties of the composites in the 2-7 GHz frequency range. By decreasing the particle size of FeSi alloy powders, both the complex permittivity and permeability of the composites increased to a certain extent. In addition, the microwave absorption properties were improved, and the frequency of absorption peak shifted towards lower frequency range. In other words, the micron-grade FeSi alloy powders with smaller particle size were more suitable to be used as absorbent in measured frequency region.  相似文献   

13.
The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites.  相似文献   

14.
To solve more and more serious electromagnetic interference problem, one thin microwave absorbing sheet employing carbonyl-iron powder (CIP) and chlorinated polyethylene (CPE) was prepared. The pattern, static magnetic properties and phase of CIP were characterized by scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD), respectively. The electromagnetic parameters of CIP were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanisms of the powder were discussed. The microwave absorption properties of composite sheets with different thicknesses and CIP ratios in matrix were investigated by measuring reflection loss (RL) in 2-18 GHz frequency range using the arch method. The results showed that appropriate CIP content and thickness could greatly improve microwave absorption properties in lower frequency range. For the sample with the weight ratio (CIP:CPE) of 16:1 and 1.5 mm thickness, the bandwidth (RL below −10 dB) achieved 1.1 GHz (2-3.1 GHz), and the minimum reflection loss value was obtained −13.2 dB at 2.2 GHz. This suggested that CIP/CPE composites could be applied as thin microwave absorbers in S-band (2-4 GHz).  相似文献   

15.
Ferroelectric-ferromagnetic composites were prepared by the usual ceramic technology combined with the sol-gel method and sintered at 900 °C to adapt to the low-temperature co-fired ceramic (LTCC) technology. The ferroelectric ceramics in reasonable amounts can effectively decrease the RF loss, dielectric loss and increase the saturation magnetization. Variations of permeability, dielectric constant and loss tangent with the frequency in the range of 1 MHz-1.8 GHz have been discussed. The microstructures of the sintered ceramics were analyzed by scanning electron microscope (SEM). The influences of different composition on the electromagnetic properties of the composites have been investigated.  相似文献   

16.
Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.  相似文献   

17.
The permittivity and permeability of composites filled with CrO2 powder are measured within the frequency range from 0.05 to 12 GHz. A sharp line of magnetic absorption is detected near 8 GHz. The effects of magnetic bias and remanence on the permittivity and permeability spectra are analyzed. The hysteretic behavior of dynamic permeability is observed for both parallel and perpendicular bias orientations relative to the microwave magnetic field. The effect is due to switching of the magnetic texture under bias equal to coercive field. At 50 MHz the parallel bias close to coercive field affects permeability much stronger than the perpendicular one. At 10 GHz the effect of perpendicular bias is higher than that of the parallel one. The effect of remanence on the microwave permeability is negligible. The 3 kOe parallel bias suppresses the line of magnetic absorption and decreases the conductivity of the composite and its microwave permittivity. This can be attributed to the magnetostatic interaction of inclusions in the vicinity of the percolation threshold.  相似文献   

18.
A high-resolution spectroscopy technique is proposed with an optical phase modulator combined with an interleaved optical frequency comb. The optical phase modulator and a frequency-locked laser light guarantee a spectral resolution less than 1 MHz on an absolute frequency axis. A wide measurement frequency range was realized using a 25 GHz optical frequency comb lying over a 4 THz frequency region. An extraction of single tooth intensity from the comb was realized by a heterodyne technique with a frequency-tunable laser used as a local oscillator. Also, the 25 GHz optical frequency comb was interleaved to generate four 100-GHz combs for removing the crosstalk from the 25 GHz neighboring sidebands in the teeth. This proposed spectroscopy technique was experimentally demonstrated with a resonator of less than 1 MHz linewidth and a H13C14N gas cell. Thus, a measurement frequency range higher than 4 THz (1530 nm-1560 nm) was confirmed with an effective spectral resolution 100 kHz order. In addition, the characteristics of the proposed system were compared with those of the previous system with a single-sideband (SSB) optical modulator.  相似文献   

19.
A phase modulation of an optical frequency comb has been applied to measure a fine spectrum in the 1.5 μm wavelength range by the optical heterodyne-detection method. The measurement frequency range covered 25 GHz, which satisfies the frequency interval of the optical frequency comb, with a spectral resolution of 1 MHz.  相似文献   

20.
This work focuses on the effect of phosphate modification on the magnetic and surface properties of iron-phenolic soft magnetic composite materials. Fourier transform infrared (FTIR) spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. Magnetic measurements show that phosphating treatment decreases the loss factor, imaginary part of permeability, increases the electrical resistivity and operating frequencies by decreasing the effective particle size. The operating frequency increases from 200 kHz for uncoated-powders samples to 1 MHz for phosphated-powders samples at optimum concentration. Phosphated iron powders that are covered by 0.7 wt% of phenolic resin exhibits lower magnetic loss and higher frequency stability. The minimum loss factor and maximum permeability at each frequency can be obtained for 0.01 g/ml orthophosphoric acid concentration in comparison with other concentrations including 0.005 and 0.04 g/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号