首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High quality cubic CdS epilayers were grown on GaAs (1 0 0) substrates by the hot-wall epitaxy method. The crystal structure of the grown epilayers was confirmed to be the cubic structure by X-ray diffraction patterns. The optical properties of the epilayers were investigated in a wide photon energy range between 2.0 and 8.5 eV using spectroscopic ellipsometry (SE) and were studied in the transmittance spectra at a wavelength range of 400-700 nm at room temperature. The data obtained by SE were analyzed to find the critical points of the pseudodielectric function spectra, 〈?(E)〉 = 〈?1(E)〉 + i?2(E)〉, such as E0, E1, E2, E0, and E1 structures. In addition, the optical properties related to the pseudodielectric function of CdS, such as the absorption coefficient α(E), were investigated. All the critical point structures were observed, for the first time, at 300 K by ellipsometric measurements for the cubic CdS epilayers. Also, the energy band gap was determined by the transmittance spectra of the free-standing film, and the results were compared with the E0 structure obtained by SE measurement.  相似文献   

2.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

3.
ZnO-CdO-TeO2 was employed as a host of Tb3+ and Yb3+ ions. The matrix doped with Tb3+ presents a crystalline/amorphous structure, while the same matrix shows an amorphous structure when it is doped with Yb3+. Optical absorption spectra, measured by using photoacoustic (PA) spectroscopy, allowed to determine the band gap, which is localized in the range 3.47-3.60 eV. Both kinds of ions Tb3+ and Yb3+ in the ZnO-CdO-TeO2 matrix show emissions that are characteristic of such ions. For Tb3+ the signals were allocated in 548, 586, 622 nm, respectively, while for Yb3+ only one signal was registered at 1000 nm.  相似文献   

4.
Songqing Zhao  Limin Yang  Kun Zhao 《Optik》2011,122(11):960-962
Fast photovoltaic characteristic was found from silver nano-cluster doped ZnO thin films when it was irradiated by 1.064 μm infrared laser. Its arising time is about 1 ns with an open-circuit photovoltage of ∼2 ns full width at half-maximum. A transient photovoltaic signal of ∼80 mV occurred with a full width at half-maximum of about 2 ns was observed under the illumination of a 4 mJ pulsed laser in duration of 25 ps. This fast photovoltaic response perhaps relate to the non-uniform distribution of the silver clusters along direction perpendicular to ZnO surface.  相似文献   

5.
6.
Optical properties of Tm-doped GaSe single crystals were investigated by measurements of optical absorption and photoluminescence. The single crystals were grown by the Bridgman technique. The X-ray diffraction analysis revealed that the single crystals were in the ε-type GaSe phase. The optical absorption spectra showed a sharp absorption peak at 582 nm near the band edge, which is due to direct free exciton. The temperature dependence of the energy of the exciton absorption peak was well fitted by the Varshni relation. In the photoluminescence spectrum at 10 K, we observed a very weak emission peak at 586 nm, a relatively strong emission peak centered at 613 nm, and several sharp and narrow emission peaks in the 790-840 nm region. The two emission peaks at 586 and 613 nm were associated with intrinsic emission lines due to direct free exciton and indirect bound exciton. The emission peaks in the 790-840 nm region, which were related to extrinsic emission, were assigned as due to the 3F43H6 transition of Tm3+ ions with a low symmetry of D3 in the host lattice.  相似文献   

7.
The effects of the thickness variation, substrate type and annealing on the crystallinity parameters, luminescent and optical properties of the zinc oxide (ZnO) thin films were reported. The thin films were deposited on the glass and the amorphous quartz substrates by the standard RF-magnetron sputtering method using ZnO targets in the argon atmosphere. It has been found that the films deposited on the glass substrate manifest a clear size effect. Both the structural and the optical parameters show clearly minima on their thickness dependences. It has been shown that annealing of the comparatively thick ZnO films leads to increase of the crystallite sizes that are followed by a considerable rise of the cathodoluminescence intensity. The corresponding model of the crystallite growth is proposed.  相似文献   

8.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

9.
Long-lasting afterglow due to Tb3+ ions has been observed in a Tb3+-doped SiO2-Ga2O3-CaO-Na2O glass, where a 4s empty orbital of Ga3+ probably works as an electron-trapping center. The sensitization effect of Yb3+ on the afterglow has been noticed.  相似文献   

10.
11.
A series of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite (TPZL) glasses pumped by a 980 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Effects of PbO content on the thermal stability, structure and upconversion properties of Tm3+/Yb3+ co-doped TPZL glasses had been investigated. The efficient visible upconversion fluorescences corresponding to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ were observed under 980 nm excitation. The upconversion intensities of blue, red and near infrared emissions in Tm3+/Yb3+ co-doped TPZL glasses were obviously enhanced with increasing PbO content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. Population density in different levels and coefficients of the energy transfer rate CDi (i=2, 4, 6) between Tm3+ and Yb3+ were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD4, and CD6 were determined to be 5.7×10−17, 1.3×10−16 and 8.6×10−17 cm3/s, respectively.  相似文献   

12.
In this paper, the optical properties of the chiral metamaterial (CMM) with complementary U-shaped structure assembly have been investigated numerically in infrared frequencies. Here, we systematically study the dependence of CMM's optical properties to the structural parameters. The giant optical activity, circular dichroism (CD), and high negative refraction can be obtained by properly selecting the parameters, respectively. CMMs will also lead to many applications in photonic devices due to their strong polarization effect and CD effect.  相似文献   

13.
In silicate sol-gel glass doped with trivalent terbium, the intensity of violet and blue fluorescence from the 5D3 level is highly dependent on terbium concentration, on the presence of Al3+ co-dopant, and on annealing conditions. Evidence is presented that aluminum co-doping prevents rare earth clusters from forming, and also modifies the coupling of rare earth ions to the local environment. 5D3 emission is observed in glasses annealed at 750 °C, and increases in intensity with increasing annealing time and with higher temperature. This behavior is shown to be due to the removal of residual hydroxyl ions.  相似文献   

14.
Electronic transitions of Pr3+ ions in Ga-Ge-Sb-Se glasses corresponding to emissions in the infrared region were studied by means of absorption and emission spectroscopies and fluorescence lifetimes measurements. Transition probabilities, radiative lifetimes, branching ratios, and quantum efficiencies of most of the emission transitions including the infrared ones occurring around 1.3, 1.7, and 2.4 μm were estimated based on a standard Judd-Ofelt analysis.  相似文献   

15.
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy () was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV).  相似文献   

16.
The temperature-dependent luminescence of Eu:Ca2Gd8Si6O26 and its decay pathways are investigated in order to assess the utility of the material as a thermometric phosphor. Non-radiative decays are found to compete with radiative processes even at room temperature. A decay pathway involving decay through charge-transfer states is proposed based on the decay profiles of emissions from 5D1 and 5D0 levels and on the temperature sensitivity of the spectra as observed after excitation by several wavelengths. The implications of this on solid-state lighting are also discussed.  相似文献   

17.
The magnetic hysteresis of Fe57Ni43/Si(100) with magnetic anisotropy induced by an external field has been studied by Brillouin light scattering (BLS). The results are compared with those of the magneto-optic-Kerr-effect (MOKE) measurement and the vibrating sample magnetometer (VSM). The BLS results show that the sample film has strong in-plane anisotropy. The angle between the magnetization and a 4.6 G applied magnetic field H reaches a maximum value of 45° when H lies along the hard axis. The coercivity and magnetic anisotropy field for the film obtained by the BLS are compared with the values obtained by the VSM and MOKE measurement.  相似文献   

18.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

19.
In reference to real devices fabricated in laboratories, the optical properties of AlGaInAs, InGaNAs, and InGaAsP semiconductor material systems for 1.3-μm semiconductor lasers are systematically studied. Simulation results show that both the AlGaInAs/InP and InGaNAs/GaAs material systems have better gain performance and smaller transparency carrier density than the InGaAsP/InP material system. For the AlGaInAs/InP material system, the characteristic temperature is improved by using compensating tensile strain in barrier. Specifically, for a 250-μm-long short-cavity AlGaInAs/InP laser, when the barrier is with a compensating tensile strain of 0.39%, the characteristic temperatures in 290-330 K and 330-350 K can be enhanced to 121.7 K and 58.9 K, respectively. For the InGaNAs/GaAs material system, simulation results suggest that the laser performance can be significantly improved when the laser is with strain-compensated GaNAs barriers.  相似文献   

20.
In this paper, we present an experimental study on the chemical and electrochemical etching of silicon carbide (SiC) in different HF-based solutions and its application in different fields, such as optoelectronics (photodiode) and environment (gas sensors). The thin SiC films have been grown by pulsed laser deposition method. Different oxidant reagents have been explored. It has been shown that the morphology of the surface evolves with the etching conditions (oxidant, concentration, temperature, etc.). A new chemical polishing solution of polycrystalline 6H-SiC based on HF:Na2O2 solution has been developed. Moreover, an electrochemical etching method has been carried out to form a porous SiC layer on both polycrystalline and thin SiC films. The PL results show that the porous polycrystalline 6H-SiC and porous thin SiC films exhibited an intense blue luminescence and a green-blue luminescence centred at 2.82 eV (430 nm) and 2.20 eV (560 nm), respectively. Different device structures based on both prepared samples have been investigated as photodiode and gas sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号