首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.  相似文献   

2.
The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites.  相似文献   

3.
Low density and thin thickness are essential for electromagnetic (EM) wave absorbers. In this study, we fabricated a novel micro-tubular iron nanocomposite (MTIC) that composed of carbon microtubes and monodisperse iron nanoparticles (NPs). The bulk density of MTIC is only 0.35±0.04 g cm−3 due to its micro-tubular structure. The presence of iron NPs increased the magnetic loss significantly and therefore enhanced the reflection loss (RL) of MTIC/paraffin composite. The optimum thickness for the composite is 1.5-1.8 mm, with maximum bandwidth of 7.6 GHz for RL<−5 dB and 3.6 GHz for RL<−10 dB. The corresponding frequency at this thickness is 10-18 GHz. Because of low density and broad bandwidth at thin thickness, MTIC is a promising light-weight absorber for EM wave absorption or microwave shielding. This study will also provide new ideas for fabricating microwave absorbers with low density and thin thickness.  相似文献   

4.
The rod-shaped Co-Ni-P shells were prepared by metalling Bacillus. The microstructures and composition of the shells were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis (EDS). The electromagnetic parameters were measured by the coaxial line method in the frequency of 2-18 GHz. It was found that the Bacillus were successfully coated with Co-Ni-P, and the inner structure of the shells are hollow in structure. The shells exhibit excellent microwave absorption properties in 5-17 GHz frequency. The microwave reflection loss is above −10 dB in 5.38-16.6 GHz frequency. The maximum microwave reflection loss reaches −35.83 dB at 9.12 GHz for samples thickness 2.4 mm, and the widest bandwidth for microwave reflection loss above −10 dB is about ∼5.32 GHz for samples thickness 2.0 mm. These results confirm the feasibility of applying Bacillus as biotemplates for fabrication of the metallic shells as lightweight microwave absorption materials are very promising for applications.  相似文献   

5.
Flake shaped (Ni0.5Zn0.5)Fe2O4/Co nanocomposites were successfully fabricated by co-precipitating of Ni-Zn ferrite on the surface of cobalt nanoflakes. The electromagnetic characteristics of the samples were studied at the frequency of 0.1–14 GHz. The results showed that the cobalt nanoflakes in compacted nanocomposites were well orientated, and the nanocomposites were characterized with low optimal reflection loss (RL) of −33.8 dB at 11.5 GHz and broad RL bandwidth for <−20 dB in the frequency range of 7.6–12.1 GHz. At the same time, the position of the absorptive band can be adjusted by changing the mass ratio of ferrite to cobalt in the nanocomposites. It is proposed that the excellent microwave absorption properties are related to the combination of strong shape anisotropy of cobalt nanoflakes and adjustable dielectric loss.  相似文献   

6.
The microwave absorption properties of nanosized double perovskite Sr2FeMoO6 and epoxy resin composites were investigated in the frequency range of 2-18 GHz using the coaxial method. The Sr2FeMoO6 composites with an optimal 20 wt% epoxy resin showed a strong electromagnetic attenuation of −49.3 dB at 8.58 GHz with a matching thickness of 2.15 mm. Moreover the optimum absorption frequency at which the reflection loss is less than −20 dB, which corresponds to 99% reflection loss of the incident microwave, is from 5.7 to 13.2 GHz with the matching thickness ranging from 3.0 to 1.5 mm. The excellent microwave-absorption properties are a consequence of a proper electromagnetic match due to the existence of the insulating matrix of anti-site defects and anti-phase domains, which not only contribute to the dielectric loss but also to the reduced eddy current loss.  相似文献   

7.
W-type barium ferrites Ba(MnZn)0.3Co1.4R0.01Fe15.99O27 with R=Dy, Nd and Pr were prepared by chemical coprecipitation method. Effects of rare-earth elements (RE) substitution on microstructural and electromagnetic properties were analyzed. The results show that a small amount of RE3+ ions can replace Fe3+ ions and adjust hyperfine parameters. An obvious increase in natural resonance frequency and high frequency relaxation, and a sharp decrease for complex permittivity have been observed. Furthermore, the matching thickness and the reflection loss (RL) of one-layer ferrite absorber were calculated. It reveals that thin and broad-band can be obtained by RE-substitution. But only when the magnetic moment of RE3+ is higher than that of Fe3+, can substitution be effective for higher RL. Dy-substituted ferrite composite has excellent microwave absorption properties. The frequency (with respect to −10 dB RL) begins from 9.9 GHz, and the bandwidth reaches far more than 8.16 GHz. The peak value is −51.92 dB at a matching thickness of 2.1 mm.  相似文献   

8.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

9.
Magnetic and electromagnetic wave absorption properties of α-Fe(N) nanoparticles, synthesized by chemical vapor condensation and then kept in air for 5 years, have been studied. The magnetic properties of the α-Fe(N) nanoparticles were slightly decreased because of the degradation in air. A slight increase in the thickness of oxide shells results in an excellent dielectric loss. The α-Fe(N) nanoparticles exhibited outstanding reflection loss (RL<−20 dB) in a 4.5-18 GHz for the absorber thicknesses of ~1-3.1 mm, and an optimal RL of −37.5 dB was obtained at 10.4 GHz with an absorber thickness of 1.6 mm. The broadest bandwidth (RL<−10 dB) from 13.3 to 17.4 GHz, covering almost the whole Ku-band, is obtained for a 1.2 mm layer.  相似文献   

10.
MnO2/doped polyaniline (PANI) is prepared by an in situ polymerization method using γ-MnO2 as the addition agent and hydrochloric acid as the doping agent. Products are characterized by FT-IR, UV-vis, XRD, and TEM. Conductivity, electromagnetic properties, and microwave absorption properties are first discussed on the basis of structural characterization. The as-prepared products of MnO2/PANI are partially crystalline in nature and spherical in pattern with grain sizes of 50-70 nm. MnO2 particles are successfully decorated with doped PANI. MnO2/PANI displays moderate electric conduction, excellent dielectric losses, and microwave absorption capabilities. Compared to pure MnO2, the dielectric and reflection loss properties of MnO2/PANI composites exhibit significant improvements, with an effective absorption band at 5 GHz under −10 dB and maximum reflection loss of −21 dB at 13.56 GHz. Pure MnO2 shows an effective absorption band of 3 GHz under −10 dB and a maximum reflection loss of −14.20 dB at 11.5 GHz. Thus, MnO2/PANI composites are found to be a promising microwave absorption material.  相似文献   

11.
Co-P-coated nickel hollow spheres (NHSs) were prepared by electroless plating technology. The morphology and component content of Co-P coating varies with the change of sodium citrate concentration in elctroless plating solution. And as phosphorus content increases in coatings, resulting in smaller grain, coercivity of microspheres decreases. The microwave absorption properties of spheres-wax composite were investigated in the range of 2-18 GHz. Both permittivity and permeability increase with an increase of cobalt content in coatings. For composite layer, a minimal reflection loss (RL, −36.9 dB) of was predicted at 8.1 GHz with a thickness of 3 mm.  相似文献   

12.
Microwave absorbing materials filled with BaTiO3 and carbonyl iron (CI) particles with various weight fractions (BaTiO3/CI particles=100/0 to 0/100) are investigated. The dielectric and magnetic properties of the absorbers can be tuned by changing the weight ratio of BaTiO3/CI particles in the frequency range of 2-18 GHz. Numerical simulations are also performed to design a single-layer and double-layer absorber. The minimum reflection loss of the composite filled with 20 wt% BaTiO3 and 60 wt% CI particles at 2.0 mm thickness can be reached to −42 dB at 4.1 GHz. With the weight ratio of CI particles in the composite increased, the microwave absorption peak shifted to the lower frequency region. By using a double-layer absorber structure, the microwave absorption performance of the absorber is enhanced. The result shows that the total thickness of the absorber can be reduced below 1.4 mm by using a matching layer filled with 50 wt% BaTiO3, and an absorption layer filled with 60 wt% BaTiO3 and 20 wt% CI particles, whereas the reflection loss below −10 dB can be obtained in the frequency range of 10.8-14.8 GHz and the minimum reflection loss of −59 dB can be obtained at 12.5 GHz.  相似文献   

13.
Fe1−xCox alloy microparticles with size 3-5 μm and novel flower-like shapes were prepared by a simple low temperature reduction method. The electromagnetic properties for the paraffin matrix composites containing Fe1−xCox alloy microparticles were measured using a vector network analyzer in the 2-18 GHz frequency range. As a consequence of large surface- and shape-anisotropy energy for the flower-like shaped 3D microstructures, the strong natural resonance around 8-12 GHz and remarkable dielectric relaxation were observed in the complex permittivity and permeability spectrum, which are dominant in the enhanced electromagnetic wave absorption (EMA) performance. It was found that both the electromagnetic parameters of complex permittivity and permeability and the intensity and location of absorption band were remarkably dependent on the Co/Fe molar ratio. The enhanced EMA performance was obtained in these Fe1−xCox-paraffin (x=0.4, 0.5, and 0.6) composites system. For the Fe0.5Co0.5 alloy, the reflection loss (RL) exceeding −20 dB was obtained in the broad frequency range of 5.4-18 GHz with a thin sample thickness of between 1.0 and 2.9 mm. In particular, an optimal RL of −59 dB was obtained at 3.61 GHz with a thin thickness of 3.6 mm for the Fe0.4Co0.6 sample. The Fe1−xCox alloy microparticles may be attractive candidates for applications of microwave absorption materials with a wide frequency range and strong absorption in the high frequency region.  相似文献   

14.
The surface of carbonyl iron powder or a mixture of carbonyl iron and ferrite was coated with polymethylmethacrylate (PMMA) microspheres by a hybridization method to make hybrid powders, and then electromagnetic wave absorption properties of the hybrid composites prepared with these hybrid powders have been investigated. As for the carbonyl iron/PMMA hybrid composite, the reflection loss less than −20 dB could be achieved in a frequency range of 1.7–5.0 GHz when the composite thickness was below 5.00 mm. In the case of the carbonyl iron-ferrite/PMMA hybrid composite, a similar reflection loss was observed in a frequency range of 4.3–13.0 GHz. Thus, the addition of ferrite was found to be useful for achieving a large absorption in a wide frequency range, especially for higher frequency values. Simulated values for the minimum reflection loss are well agreed with actually measured ones, because of homogeneous distribution of carbonyl iron and/or ferrite in these hybrid composites.  相似文献   

15.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

16.
The flower-like ZnO and ZnO/carbonyl-iron composite have been prepared by a sonochemical route and ball-milling process, respectively. For ZnO/carbonyl-iron composite, a reflection loss (RL) exceeding −20 dB was obtained in a broad frequency range of 8.4-17.9 GHz with a thin thickness of 1.2-2.3 mm. An optimal RL of −61 dB was found at 11.7 GHz for an absorber thickness of 1.91 mm. It is demonstrated that the attractive microwave-absorption properties are a consequence of a proper electro-magnetic impedance match and geometrical cancellation at the air-material interface. In addition, an impedance mismatch function was proposed, which provides an effective method to determine the microwave absorbing properties from the intrinsic materials constants. The calculated value of matching frequency and thickness is well consistent with the experimental data. The method also provides a simple theoretical graphic aid for determining the absorption characteristics and the location of the matching conditions in the frequency domain.  相似文献   

17.
The microwave-absorbing properties for different shapes of carbonyl-iron particles prepared by the high-energy planetary ball milling with 40 vol% in epoxy resin matrix have been investigated. Higher value of magnetic permeability and permittivity can be obtained in the composites for thin flake carbonyl iron than spherical powders. The results are attributed to reduction of eddy current loss, orientation of magnetic moment and space-charge polarization with the shape change from spherical powders to thin flake particles. As the iron flakes with 0.4 μm in thickness as the absorbent fillers, the minimum RL value of −6.20 dB was observed at 4.57 GHz with thickness of 1 mm. The minimum reflection loss (RL) shifts to lower frequency and the value declines with change from spherical powders to thin flakes. It results from the considerable dielectric loss in the absorbing materials.  相似文献   

18.
Fe/graphite oxide nanocomposites were prepared by inserting Fe3+ into layers of graphite oxide and then reducing Fe3+/graphite oxide compound at different reduced reaction temperatures in H2. The composition, crystal structure, magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites were investigated using elemental analysis, transmission electron microscope (TEM), X-ray diffraction (XRD), magnetic hysteresis curve and electromagnetic parameter analysis. The results show that the densities of samples are 2.43–2.47 g/cm3 and the nanocomposites are soft magnetic materials. The optimum reduced reaction temperature for preparing Fe/graphite oxide nanocomposites is 600 °C. With the increase of the thickness of the sample, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. Microwave absorption property of Fe/graphite oxide nanocomposites prepared at 600  °C (FeGO600) is the best. When the thickness is 1 mm, the maximum theoretical reflection loss of FeGO600 is −9 dB and the frequency region in which the maximum reflection loss is more than −6.0 dB is 11–18 GHz. In conclusion, FeGO600 is a good candidate for microwave absorbent due to its low density, wide frequency region for microwave absorption and large reflection loss.  相似文献   

19.
Flake carbonyl iron (CI) particles and amorphous silica were used to fabricate SiO2-coated CI particles through the Stober process. The as-prepared SiO2-coated CI particles were annealed at 500 °C for 1 h under argon and air atmosphere. The XRD results showed that only a little amount of oxides were formed when the SiO2-coated CI particles were annealed under the air atmosphere. The magnetic properties of the SiO2-coated CI particles before and after annealing treatment showed little change, indicating that amorphous silica appears to be very effective in reducing oxidation of the CI particles. The reflection loss exceeding −10 dB can be obtained in the frequency range of 9.9-14.6 GHz and a minimum value can be reached to −21.5 dB at 12.2 GHz for the annealed SiO2-coated CI particles with the composite thickness being 1.5 mm. The mechanism of annealing treatment influence on the electromagnetic properties and microwave absorption of the SiO2-coated CI particles was also discussed.  相似文献   

20.
Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号