首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MgB2 was successfully fabricated through diffusion-controlled three-layered (B-Mg-B) technique under high pressure. Due to melting temperature of Mg, the material was pre-heat treated at 600 °C between 1 and 48 h. Optimum pre-heat treatment condition was found to be 600 °C for 48 h. Then, the compacted material was grinded and pelletized under pressure of 2 ton. The pellets were heat treated at 600-900 °C for 1-48 h. Optimum heat treatment condition was determined to be 800 °C for 1 h for formation of almost pure MgB2. Diffusion coefficient was determined with Fick's law and EDX data. Diffusion coefficient value for B in Mg matrix and Mg in B matrix was determined to be 1.66×10−7 and 3.14×10−8 cm2/sn, respectively. Best Tc value (39.4 K) was obtained for material heat treated at 800 °C for 1 h. A symmetric hysteresis was obtained for the best MgB2 material and magnetization decreased with increase in the temperature and the applied magnetic field.  相似文献   

2.
The residual stress instituted in Ni-Mn-Ga thin films during deposition is a key parameter influencing their shape memory applications by affecting its structural and magnetic properties. A series of Ni-Mn-Ga thin films were prepared by dc magnetron sputtering on Si(1 0 0) and glass substrates at four different sputtering powers of 25, 45, 75 and 100 W for systematic investigation of the residual stress and its effect on structure and magnetic properties. The residual stresses in thin films were characterized by a laser scanning technique. The as-deposited films were annealed at 600 °C for 1 h in vacuum for structural and magnetic ordering. The compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. The annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. It was found that the increase of sputtering power induced coarsening in thin films. Typical saturation magnetization and coercivity values were found to be 330 emu/cm3 and 215 Oe, respectively. The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature.  相似文献   

3.
Hysteresis loops of a ferromagnetic material containing internal stresses due to heat treatment are investigated. The 54SiCr6 spring steel was quenched and tempered in the 300-740 °C range. At temperatures from 300 to 500 °C changes in hysteresis curves can be described with a very good accuracy by the effective field model found previously for steels under stress due to direct mechanical loading. The effective field due to tempering had a similar shape with that by direct application of external compressive stress. In the range 300-500 °C the effective field changes linearly with the tempering temperature. These magnetic results are in correspondence with other works showing that in this temperature range the internal stress decreases by more than two orders of magnitude. At temperatures above 500 °C the change of magnetic properties is not monotonous because of influence of different factors—the spheroidization and the coarsening of the cementite, followed by recovery and recrystallization above 600 °C.  相似文献   

4.
Nanocrystalline octahedra of cobalt ferrite CoFe2O4 powders were synthesized using the organic acid precursor route. The effect of the calcination temperature, Fe3+/Co2+ molar ratio, calcination time and type of organic acid (oxalic, benzoic and tartaric acids) on the formation, crystallite size, microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ molar ratio was varied from 2 to 1.739 while the annealing temperature was controlled from 400 to 1000 °C for various periods from 0.5 to 2 h. The resulting powders were investigated using X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). XRD results indicate that a well crystallized, single spinel cobalt ferrite phase was formed for the precursors annealed at 600-800 °C for 2 h, using oxalic and tartaric acids as precursors for Fe3+/Co2+ molar ratio 1.818. The crystallite size of as-formed powders was in the range of 38.0-92.6 nm at different operating conditions. The calcination temperature and Fe3+/Co2+ molar ratio have a significant effect on the microstructure of the produced cobalt ferrite. The microstructure of the produced powders was found to be octahedra-shaped. The crystalline, pure cobalt ferrite powders with magnetic properties having a maximum saturation magnetization (76.1 emu/g) was achieved for the single phase at Fe3+/Co2+ molar ratio 1.818 and annealing temperature of 600 °C for 2 h using tartaric acid precursor.  相似文献   

5.
The microstructure evolution in several polycrystalline yttrium iron garnet samples as a result of a sintering scheme was studied in detail, in parallel with the changes in their magnetic properties. Samples with nanometer sized starting powder were synthesized by employing the High-Energy Ball Milling technique and then sintering toroidal compacts of the milled powder. Nine sintered samples were obtained, each corresponding to a particular sintering from 600 °C to 1400 °C. The samples were characterized for their evolution in crystalline phases, microstructure and magnetic hysteresis-loops parameters. The results showed an increasing tendency of the saturation magnetization and saturation induction with grain size, which is attributed to crystallinity increase and to reduction of demagnetizing fields in the grains. The variation in coercivity could be related to anisotropy field changes within the samples due to grain size changes. In particular, the starting appearance of room temperature ferromagnetic order suggested by the sigmoid-shaped B-H loops seems to be dependent on a sufficient number of large enough magnetic domain-containing grains having been formed in the microstructure. Viewed simultaneously, the hysteresis loops appear to belong to three groups with different magnetism-type dominance, respectively dependent on phase purity and three different groups of grain size distributions.  相似文献   

6.
Sm-Co based nanomagnetic material was synthesized by means of a Pechini-type sol-gel process. In this method, a suitable gel-precursor was prepared using respective metal salts and complexing agent such as citric acid. The gel-precursor was dried at 300 °C and then subjected to various reductive annealing temperatures: 350, 500 and 600 °C. The nanopowders so obtained were characterized for their structure, phase composition and magnetic properties. FT-IR studies on the gel-precursor showed the binding of metal cations with the citrate molecules in the form of metal-citrate complex. The gel-precursor, which was annealed at 350 °C showed the presence of both meta-stable cobalt carbide (Co2C, Co3C) and Co3O4 phases; while the sample annealed at 500 °C indicated the sign of SmCo5 phase. Upon increasing the reductive annealing temperature to 600 °C, crystalline phase such as fcc-Co and Sm2C3 were formed prominently. FE-SEM analysis revealed the change in sample morphology from spherical to oblate spheres upon increasing the annealing temperature. VSM measurements demonstrated ferromagnetic nature at room temperature for all the nanopowders obtained irrespective of their after reductive annealing temperature.  相似文献   

7.
The effect of pulsed magnetic primary annealing on the microstructure and texture of two-stage cold-rolled silicon steel is investigated. Specimens are annealed at 700 °C for 1 h under a 1 T pulsed magnetic field along different directions with respect to the sample coordinate system. Crystallographic orientation and grain size are identified by analyzing electron backscattered diffraction pattern. The effects of magnetic field treatment are related to the magnetic field direction. Based on the anisotropy energy of ferromagnetic material during magnetic annealing, a hypothesis is proposed. All of the experimental results in this work support the proposed model.  相似文献   

8.
The effects of high magnetic field (10 T) on the products obtained by calcination of Co-Fe LDH precursors at different temperatures were investigated. The XRD results indicated that FeIII substituted for CoIII in Co3O4 to yield CoIICoIIIFeIIIO4 under the calcination of Co-Fe LDH precursors at 400 °C. The products obtained by magnetic field annealing at 400 °C had a porous plate-like morphology, whereas the products without magnetic field annealing were composed of nanoparticles. It was seen that CoFe2O4 phase could be formed at low temperature (about 500 °C) under the magnetic field annealing. The grain size of products obtained by magnetic field annealing at 800 °C was larger than that of zero magnetic field. It was found that the saturation magnetization was significantly enhanced after magnetic field annealing, especially at lower temperature (≤600 °C). The possible reason for the effects on the microstructure and magnetic properties of products obtained by magnetic field annealing was discussed.  相似文献   

9.
(Fe,Co)–Zr,Hf)–Cu–B (HITPERM-type) alloys with variable Hf, Zr and Co content were isothermally crystallised at 500–650 °C for 1 h, and the optimum nanocrystallisation temperature was selected on the basis of the minimum coercive field at room temperature. The quasistatic hysteresis loops were measured at temperature from 20 to 650 °C. Subsequently, the optimally annealed alloys were subjected to long-term annealing at 500, 550 and 600 °C. Working temperature of 600°C is too high for the investigated alloys to maintain stable magnetic properties. Temperature of 550 or 500 °C permits the material to be magnetically stable for a long period. The magnetic hysteresis loops recorded for the nanocrystalline alloys, where Fe:Co ratio is close to 1 and refractory metals content is 7 at.%, prove that coercive field increases slightly with temperature, but remains in the range of 20–40 A/m (depending on the alloy composition) from 20 to 550 °C. This proves that the investigated alloys, after optimisation of chemical composition, may be suitable for high temperature use.  相似文献   

10.
An ultra-low carbon steel (30 ppm after decarburization) containing Al and Si was aged for distinct soaking times at 210 °C. The core loss increased continuously until around 24 h. After that, only slight changes were verified. It was found that only the hysteresis loss component changed during the aging treatment. By internal friction test and transmission electron microscopy it was seen that carbon precipitation caused the magnetic aging. By scanning electron microscopy it could be concluded that the increase of aging index was attributed to the high number of carbides larger than 0.1 μm.  相似文献   

11.
We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (∼805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.  相似文献   

12.
Recent studies have shown the effects of a post sintering heat treatment at 1000 °C for 24 h on the microstructure and magnetic properties of Pr-Fe-B/Nd-Fe-B magnets based on Nd16Fe76B8 and Pr16Fe76B8. In an attempt to understand the influence of environmental factors, an investigation into the effects of annealing under different degrees of vacuum for both types of sintered magnets has been carried out. The effect of annealing the Pr-Fe-B magnets at 1000 °C for 24 h resulted in a general increase in the magnetic properties, especially the intrinsic coercivity, although the degree of improvement appeared to be dependent on the initial annealing conditions (ambient pressure). Oxygen analysis of sintered and annealed magnets indicates a change in the nature of the grain boundary phases after the annealing treatment. The effect of annealing the Nd-Fe-B magnets at 1000 °C for 24 h resulted in a general decrease in the magnetic properties, especially the intrinsic coercivity.  相似文献   

13.
The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu–Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350–650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.  相似文献   

14.
The influence of isothermal annealing (1 h at 600 °C in Ar atmosphere) on the soft magnetic properties and magnetoimpedance (MI) effect has been studied in ribbons of the following Nanoperm alloys: Fe91Zr7B2, Fe88Zr8B4, Fe87Zr6B6Cu1 and Fe80Zr10B10. A maximum MI ratio of about 27% was measured for the nanocrystalline alloy Fe87Zr6B6Cu1 at a driving frequency of 0.2 MHz. The thermal annealing led to magnetic softening for this alloy, while a hardening is observed for the Fe80Zr10B10 alloy.  相似文献   

15.
CoCu nanowires were fabricated in anodic alumina templates by a simple metal displacement deposition method and the as-deposited samples were subsequently annealed at 400 °C in vacuum. The CoCu nanowires are 80 nm in diameter and 50 μm in length. The aspect ratio (ratio of length to diameter) is larger than 600, which results in distinctive magnetic anisotropy. Enhanced coercivity (about 2245 Oe) and large squareness of 92% have been observed in the annealed samples.  相似文献   

16.
In many common Al–Mg–Si alloys (6000 series) intermediate storage at or near ‘room temperature’ after solutionising leads to pronounced changes of the precipitation kinetics during the ensuing artificial ageing step at ≈180 °C. This is not only an annoyance in production, but also a challenge for researchers. We studied the kinetics of natural ‘room temperature’ ageing (NA) in Al–Mg–Si alloys by means of various different techniques, namely electrical resistivity and hardness measurement, thermoanalysis and positron lifetime and Doppler broadening (DB) spectroscopy to identify the stages in which the negative effect of NA on artificial ageing might appear. Positron lifetime measurements were carried out in a fast mode, allowing us to measure average lifetimes in below 1 min. DB measurements were carried out with a single detector and a 68Ge positron source by employing high momentum analysis. The various measurements show that NA is much more complex than anticipated and at least four different stages can be distinguished. The nature of these stages cannot be given with certainty, but a possible sequence includes vacancy diffusion to individual solute atoms, nucleation of solute clusters, Mg agglomeration to clusters and coarsening or ordering of such clusters. Positron lifetime measurements after more complex ageing treatments involving storage at 0 °C, 20 °C and 180 °C have also been carried out and help to understand the mechanisms involved.  相似文献   

17.
The development of devices based on magnetic tunnel junctions has raised new interests on the structural and magnetic properties of the interface Co/MgO. In this context, we have grown ultrathin Co films (≤30 Å) by molecular-beam epitaxy on MgO(0 0 1) substrates kept at different temperatures (TS). Their structural and magnetic properties were correlated and discussed in the context of distinct magnetic anisotropies for Co phases reported in the literature. The sample characterization has been done by reflection high energy electron diffraction, magneto-optical Kerr effect and ferromagnetic resonance. The main focus of the work is on a sample deposited at TS=25 °C, as its particular way of growth has enabled a bct Co structure to settle on the substrate, where it is not normally obtained without specific seed layers. This sample presented the best crystallinity, softer magnetic properties and a four-fold in-plane magnetic anisotropy with Co〈1 1 0〉 easy directions. Concerning the samples prepared at TS=200 and 500° C, they show fcc and polycrystalline structures, respectively and more intricate magnetic anisotropy patterns.  相似文献   

18.
The magnetic properties of 1.5 at% Fe-doped NiO bulk samples were investigated. The samples were prepared by sintering the corresponding precursor in air at temperatures between 400 and 800 °C for 6 h. The synthesis was by a chemical co-precipitation and post-thermal decomposition method. In order to allow a comparison, a NiO/0.76 at% NiFe2O4 mixture was also prepared. The X-ray diffraction pattern shows that the samples that were sintered at 400 and 600 °C remain single phase. As the sintering temperature increased to 800 °C, however, the sample becomes a mixture of NiO and NiFe2O4 ferrite phases. The samples were investigated by measuring their magnetization as a function of magnetic field. The samples sintered between 400 and 800 °C and the one mixed directly with NiFe2O4 nanoparticles show a coercivity value of Hc≈200, 325, 350 and 110 Oe, respectively. The magnetic properties of the samples depend strongly on the sintering temperature. Simultaneously, the field-cooling hysteresis loop shift also observed after cooling the sample sintered at 600 °C to low temperature suggests the possibility of the existence of a ferromagnetic/antiferromagnetic exchange coupling.  相似文献   

19.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

20.
Soft magnetic composites with a thin MgO insulating layer were produced by a sol-gel method. Energy dispersive X-ray spectroscopy, X-ray analysis, Fourier transform infrared spectroscopy, density measurement and compositional maps confirmed that thin layers of MgO covered the iron powders. Coercivity measurement showed that the stress relaxation and reduction of hysteresis loss efficiently occurred at 600 °C. At this temperature, the phosphate insulation of commercial SOMALOYTM samples degrade and their electrical resistivity, magnetic permeability and operating frequency decreases noticeably. The results show that the MgO insulation has a greater heat resistance than conventional phosphate insulation, which enables stress-relief at higher temperatures (600 °C) without a large increase in eddy current loss. The results of annealing at 600 °C show that the electrical resistivity and ferromagnetic resonance frequency increased from 11 μΩ m and 1 kHz for SOMALOYTM samples to 145 μΩ m and 100 kHz for the MgO insulated composites produced in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号