首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K.  相似文献   

2.
La0.85−xSmxAg0.15MnO3 (x=0−0.2) ceramics were prepared using the conventional solid-state synthesis method to investigate the effect of Sm3+ substitution on magnetic and electrical transport properties. Magnetic susceptibility versus temperature measurements showed all samples exhibit ferromagnetic to paramagnetic transition with Curie temperature, Tc decreasing from 283 K (x=0) to 164 K (x=0.2) with increasing Sm3+. The observed slope in susceptibility, χ′ versus temperature curves below Tc indicates the possible presence of FM and AFM phases in the metallic region. In addition, a deviation from the Curie-Weiss law above Tc in 1/χ′ versus T curves indicates the existence of a Griffith's phase in the x=0.05−0.2 samples due to the Sm3+ ion substitution. The Griffith temperature, TG was found to decrease from 295 K (x=0.05) to 229 K (x=0.2). Electrical resistivity measurements of the samples in zero field showed transition from metallic behavior to insulating behavior as the temperature was increased. For x=0, two metal-insulator, MI transition peaks were observed at Tp1=282 K and at Tp2=250 K. Both peaks shifted to lower temperatures with the increase in Sm3+. The relative resistivity of the first peak to the second peak decreases with increasing Sm3+ for x>0.05 while at x=0.2 the Tp1 peak was strongly suppressed. Magnetoresistance, MR was observed to weaken with Sm3+ substitution. The metallic region of the ρ(T) curve of the x=0−0.15 samples was fitted to the model of electron-electron and electron-magnon scattering while the insulating region was fitted to the variable range hopping, VRH model. The resistivity behavior indicated that the substitution of Sm3+ weakened the double exchange process and enhanced the Jahn-Teller effect. Our results indicated that the Tp1 peak is strongly related to the double-exchange mechanism while the Tp2 peak is suggested to originate from magnetic inhomogeneity.  相似文献   

3.
In this paper, magnetic property and magnetocaloric effect (MCE) in nanoparticles perovskite manganites of the type (La0.67−xGdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) synthesized by using an amorphous molecular alloy as precursor have been reported. From the magnetic measurements as function of temperature and magnetic applied field, we have discovered that the Curie temperature (TC) of the prepared samples is found to be strongly dependent on Gd content. The Curie temperature of samples is 358.4, 343.2, and 285.9 K for x=0.1, 0.15, and 0.2, respectively. A large magnetocaloric effect close to TC has been observed with a maximum of magnetoentropy change in all the samples, ∣ΔSMmax of 1.96 and 4.90 J/kg K at 2 and 5 T, respectively, for a substitution rate of 0.15. In addition, the maximum magnetic entropy change observed for samples with different concentration of Gd, exhibits a linear dependence with the applied high magnetic field. These results suggest that (La0.67−x Gdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) compounds could be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

4.
Polycrystalline perovskite manganites La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) were prepared by sol-gel method. The prepared samples remain single phase with a perovskite structure, revealed by X-ray diffraction. The structure refinement of La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) samples was performed in the hexagonal setting of the Rc space group. The dependence of magnetization M on applied magnetic field H and temperature T was measured carefully near the Curie temperature TC for all the samples. With the increasing Eu content, both the unit cell volume and Curie temperature TC of 298 K has been detected with a maximum of magnetic entropy |ΔSMmax| for the La0.7−xEuxBa0.3MnO3 with x=0.15, reaching a value of 2.3 J/kg K when a magnetic field of 10 kOe was applied and the relative cooling power (RCP) is 46 J/kg. These results suggest that the material may be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

5.
Following the double metal-insulator peaks found in series of perovskite manganites La0.7−xPrxPb0.3MnO3 (x=0, 0.05, 0.1), the magnetic entropy change of La0.6Pr0.1Pb0.3MnO3 was carefully investigated as a representative. The maximum magnetic entropy change (ΔSH=−1.7 J/kg K at 300 K) and the expanded refrigerant capacity (about 123.8 J/kg) had been obtained under 10 kOe magnetic field variation, though the double peak of maximum magnetic entropy change had not occurred since the comparative faint magnetic signal from the Pr ions inhomogeneity existed in the octahedral frame submerged in the strong magnetic signal originated from the dominating octahedral frame both in the double exchange mechanism, but the width at half maximum in the magnetic entropy change comparatively broadened.  相似文献   

6.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30−xSrx)MnO3:Ag 10% manganite have been investigated. All compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the insulator–metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x=0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is increased. The MR at 300 K is found to be as large as 31% with magnetic field change of 1 T, whereas it reaches up to 49% at magnetic field of 3 T for the La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (ΔSMmax) at near its Tc (300.5 K) is 7.6 J kg−1 K−1 upon the magnetic field change of 5 T. The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1 T, 49%3 T) and reasonable change in magnetic entropy (7.6 J kg−1.K−1, 5 T) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.  相似文献   

7.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

8.
Polycrystalline samples of La0.67Ca0.33MnO3 were prepared by solid-state reactions by varying the pelletization force and the sintering temperature. Lowering the sintering temperature gave rise to smaller grains and increased the overall resistivity of the ceramic. Partial melting was observed in the ceramics sintered at higher temperatures (1400-1500 °C). Additionally, these ceramics showed two distinct resistivity peaks. The resistivity peak near the magnetic transition (TC) was sharp, whereas the second peak was a broad one observed below TC.  相似文献   

9.
Series of polycrystalline manganese perovskite oxides La0.7−xNdxPb0.3MnO3 (x=0, 0.05, and 0.1) are prepared by the sol-gel technique, La0.65Nd0.05Pb0.3MnO3 were representatively investigated because the peculiar double resistivity peaks were found; the maximum magnetic entropy change ΔSH=−2.03 J/kg K and its good refrigerant capacity 71.05 J/kg around room temperature were obtained under 9 kOe magnetic field variation. The expected double peaks of magnetocaloric effect had not occurred since magnetic entropy change originated from the differential coefficient of magnetic moment to temperature; the relatively well refrigerant capacity possibly results from the faint magnetic inhomogeneity mixed in the double exchange strong magnetic signal.  相似文献   

10.
Magnetocaloric effect (MCE) in fine-grained perovskite manganites of the type La0.67Ba0.33Mn1−xSnxO3 (x=0.05, 0.1 and 0.15) were prepared by the solid-state method. The prepared samples remain single phase and exhibit paramagnetic to ferromagnetic phase transition (TC) at 340, 325 and 288 K for x=0.05, 0.1 and 0.15, respectively. From the measured magnetization data of La0.67Ba0.33Mn1−xSnxO3 compounds as a function of field (2 T), the associated magnetic entropy change close to their respective Curie temperatures and the relative cooling power (RCP) have been determined. Large MCE has been obtained in all samples and |ΔSM|max reached the highest value of 2.49 J/kg K at TC (288 K) for the sample x=0.15, with H=2 T.  相似文献   

11.
Four manganite samples of the series, (La1/3Sm2/3)2/3SrxBa0.33−xMnO3, with x=0.0, 0.1, 0.2 and 0.33, were investigated by X-band (∼9.5 GHz) electron paramagnetic resonance (EPR) in the temperature range 4-300 K. The temperature dependences of EPR lines and linewidths of the samples with x=0.0, 0.1 and 0.2, containing Ba2+ ions, exhibit similar behavior, all characterized by the transition temperatures (TC) to ferromagnetic states in the 110-150 K range. However, the sample with x=0.33 (containing no Ba2+ ions) is characterized by a much higher TC=205 K. This is due to significant structural changes effected by the substitution of Ba2+ ions by Sr2+ ions. There is an evidence of exchange narrowing of EPR lines near Tmin, where the linewidth exhibits the minimum. Further, a correlation between the temperature dependence of the EPR linewidth and conductivity is observed in all samples, ascribed to the influence of small-polaron hopping conductivity in the paramagnetic state. The peak-to-peak EPR linewidth was fitted to ΔBpp(T)=ΔBpp,min+A/Texp(−Ea/kBT), with Ea=0.09 eV for x=0.0, 0.1 and 0.2 and Ea=0.25 eV for x=0.33. From the published resistivity data, fitted here to σ(T)∝1/T exp(−Eσ/kBT), the value of Eσ, the activation energy, was found to be Eσ=0.18 eV for samples with x=0.0, 0.1 and 0.2 and Eσ=0.25 eV for the sample with x=0.33. The differences in the values of Ea and Eσ in the samples with x= 0.0, 0.1and 0.2 and x=0.33 has been ascribed to the differences in the flip-flop and spin-hopping rates. The presence of Griffiths phase for the samples with x=0.1 and 0.2 is indicated; it is characterized by coexistence of ferromagnetic nanostructures (ferrons) and paramagnetic phase, attributed to electronic phase separation.  相似文献   

12.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

13.
We demonstrated that La2/3Sr1/3MnO3 sintered manganite could exhibit a magnetoreactance ΔX/X0 of −25.5% at 100 kHz, a giant magnetoimpedance ΔZ/Z0 of −20% at 1-2 MHz and a giant AC magnetoresistance ΔR/R0 of −39.3% at 5 MHz under a very low field of 300 Oe at room temperature, whereas the DC magnetoresistance Δρ/ρ0 was −3.95% under H=10 kOe and only about −0.18% under H=300 Oe. Large field-induced change of real and imaginary circular permeabilities (Δμ?/μ?(0) and Δμ?/μ?(0)) were obtained for La2/3Sr1/3MnO3 sintered manganite. The giant magnetoreactance (giant magneto-inductive effect) at very low frequencies originates from the field induced change of transverse permeability. At 100 kHz under H=300 Oe, La2/3Sr1/3MnO3 sintered manganite has Δμ?/μ?(0)=−25.8% and Δμ?/μ?(0)=−10.9%. The values of ΔR/R0 and ΔZ/Z0 are very small under 300 Oe at 100 kHz. The giant magnetoimpedance at high frequencies mainly originates from the large transverse permeability change induced by DC magnetic fields, via the penetration depth. Under H=300 Oe, La2/3Sr1/3MnO3 sintered manganite presents values of Δμ?/μ?(0)=−24.9%, Δμ?/μ?(0)=−49.8% at 1 MHz, and Δμ?/μ?(0)=−21.2%, Δμ?/μ?(0)=−58.2% at 5 MHz.  相似文献   

14.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

15.
The influence of the silver Ag-substitution for Pb ions in the mixed valence perovskites La0.67Pb0.33−xAgxMnO3 (0≤x≤0.15) was investigated by X-ray magnetic and electric transport measurements. All compositions were synthesized using the sol-gel technique. X-ray diffraction and structure refinement show that they crystallize in the rhombohedral structure with the R3?c space group. Upon Ag doping on Pb sites, the lattice parameters, unit cell volume, and the Mn-O-Mn bond angle are reduced. All the samples exhibit a ferromagnetic-paramagnetic transition and metallic-semi-conductor one with increasing temperature. The substitution of Pb by Ag has great influence on the magnetic and electrical transport properties of this family of compounds, decreasing continuously both the Curie temperature (from 361 to 290 K) and the resistivity transition temperature Tp.  相似文献   

16.
The influence of partial substitution of La by Dy on the magnetocaloric response of (La1−xDyx)0.67Ca0.33Mn0.9V0.1O3, where x=0.03, 0.15 and 0.25 is studied. Rietveld refinement of X-ray diffraction pattern using GSAS method shows that the compounds adopt the orthorhombic structure with Pnma space group. The systematic change in lattice parameters and magnetic phase transition indicates the substitution effect of Dy. From the magnetization isotherms at different temperatures, magnetic entropy change close to their respective transition temperatures (TC) has been evaluated. The maximum value of entropy change near TC is found to be about 4.8 J/kg K at 187.5 K for LCMVDy0.03, 2.45 J/kg K at 107.5 K for LCMVDy0.15 and 2.15 J/kg K at 92.5 K for LCMVDy0.25 at 4 T. Dy addition produces a reduction in TC and in magnitude of the magnetic entropy change. Even though the entropy change decreases with increasing Dy substitution the refrigerant temperature range, ΔT, is found to be 10 K for LCMVDy0.03, 31 K for LCMVDy0.15 and 35 K for LCMVDy0.25 compounds [90%] at 4 T. The field dependence of the magnetic entropy change is also analyzed showing the power law dependence, ΔSMHn where n=0.75(2) for LCMVDy0.03, n=0.80(4) for LCMVDy0.15 and n=0.92(8) for LCMVDy0.25 compounds at their respective transition temperatures. The relative cooling power and its field dependance are also analyzed.  相似文献   

17.
The Gd60Co26Al6Ge8 alloy has been prepared by the copper-mold suck-casting and its phase component has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). It is shown that this alloy consists of primary crystalline Gd5Ge3 phase and amorphous matrix. The glass transition temperature (Tg) and crystallization temperatures (Tx) occur at 292 and 320 °C, respectively. The maximal magnetic entropy change (ΔSM) under 0-5 T field is about 7.6 J (kg−1 K−1) at 155 K and the refrigeration capacity (RC) is about 768 J kg−1, which makes Gd60Co26Al6Ge8 bulk metallic glass matrix composite a promising candidate for magnetic refrigerant.  相似文献   

18.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

19.
The magnetic and transport properties of the perovskites La0.67Ca0.33Mn1-xTMxO3 were found to be sufficiently changed with the substitution of Mn-sites by other 3d transition-metal cations (TM=Cu,Zn; x=0.15). The values of TC, TMI, and TCMR were surveyed when Mn was replaced by Cu and Zn. The magnetic field induced resistivity and magnetic entropy change of these samples showed abrupt changes near TC (194.2 and 201.5 K for Cu and Zn-doped case respectively) and attained the highest values among the doped cases (up to 20% Cu). The maximum values (obtained at H=4 kOe) of magnetoresistance ratio (CMR) were 27.8%, and 24.5% and of magnetic entropy change (−ΔSM) were 3.9 and 3.2 J/kg K for Cu and Zn-doped, respectively.  相似文献   

20.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号