首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radial basis functions have gained popularity for many applications including numerical solution of partial differential equations, image processing, and machine learning. For these applications it is useful to have an algorithm which detects edges or sharp gradients and is based on the underlying basis functions. In our previous research, we proposed an iterative adaptive multiquadric radial basis function method for the detection of local jump discontinuities in one-dimensional problems. The iterative edge detection method is based on the observation that the absolute values of the expansion coefficients of multiquadric radial basis function approximation grow exponentially in the presence of a local jump discontinuity with fixed shape parameters but grow only linearly with vanishing shape parameters. The different growth rate allows us to accurately detect edges in the radial basis function approximation. In this work, we extend the one-dimensional iterative edge detection method to two-dimensional problems. We consider two approaches: the dimension-by-dimension technique and the global extension approach. In both cases, we use a rescaling method to avoid ill-conditioning of the interpolation matrix. The global extension approach is less efficient than the dimension-by-dimension approach, but is applicable to truly scattered two-dimensional points, whereas the dimension-by-dimension approach requires tensor product grids. Numerical examples using both approaches demonstrate that the two-dimensional iterative adaptive radial basis function method yields accurate results.  相似文献   

2.
This paper suggests an iterative parametric approach for solving multiobjective linear fractional programming (MOLFP) problems which only uses linear programming to obtain efficient solutions and always converges to an efficient solution. A numerical example shows that this approach performs better than some existing algorithms. Randomly generated MOLFP problems are also solved to demonstrate the performance of new introduced algorithm.  相似文献   

3.
潘春平 《计算数学》2014,36(3):231-244
本文研究了鞍点问题的迭代法.在Benzi等人提出的维数分裂(DS)迭代方法的基础上,提出了具有三个参数的广义维数分裂(GDS)迭代法,该方法包含了DS迭代法,理论分析表明该方法是无条件收敛的.通过对有限差分法和有限元法离散的Stokes问题及有限元法离散的Oseen问题的数值结果表明,本文所给方法是有效的.  相似文献   

4.
Iterative regularization multigrid methods have been successfully applied to signal/image deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring matrix has a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations. The smoother has to be an iterative regularization method. The grid transfer operator should preserve the regularization property of the smoother. This paper improves the iterative multigrid method proposed in [11] introducing a wavelet soft-thresholding denoising post-smoother. Such post-smoother avoids the noise amplification that is the cause of the semi-convergence of iterative regularization methods and reduces ringing effects. The resulting iterative multigrid regularization method stabilizes the iterations so that the imprecise (over) estimate of the stopping iteration does not have a deleterious effect on the computed solution. Numerical examples of signal and image deblurring problems confirm the effectiveness of the proposed method.  相似文献   

5.
Block (including s‐step) iterative methods for (non)symmetric linear systems have been studied and implemented in the past. In this article we present a (combined) block s‐step Krylov iterative method for nonsymmetric linear systems. We then consider the problem of applying any block iterative method to solve a linear system with one right‐hand side using many linearly independent initial residual vectors. We present a new algorithm which combines the many solutions obtained (by any block iterative method) into a single solution to the linear system. This approach of using block methods in order to increase the parallelism of Krylov methods is very useful in parallel systems. We implemented the new method on a parallel computer and we ran tests to validate the accuracy and the performance of the proposed methods. It is expected that the block s‐step methods performance will scale well on other parallel systems because of their efficient use of memory hierarchies and their reduction of the number of global communication operations over the standard methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we apply the modified variational iteration method (MVIM) for solving the Helmholtz equations. The proposed modification is made by introducing He's polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using the Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

7.
In this paper, we apply the modified variational iteration method (MVIM) for solving the fourth-order boundary value problems. The proposed modification is made by introducing He’s polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using the Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

8.
Stable finite difference approximations of convection‐diffusion equations lead to large sparse linear systems of equations whose coefficient matrix is an M‐matrix, which is highly non‐symmetric when the convection dominates. For an efficient iterative solution of such systems, it is proposed to consider in the non‐symmetric case an algebraic multilevel preconditioning method formerly proposed for pure diffusion problems, and for which theoretical results prove grid independent convergence in this context. These results are supplemented here by a Fourier analysis that applies to constant coefficient problems with periodic boundary conditions whenever using an ‘idealized’ version of the two‐level preconditioner. Within this setting, it is proved that any eigenvalue λ of the preconditioned system satisfies for some real constant c such that . This result holds independently of the grid size and uniformly with respect to the ratio between convection and diffusion. Extensive numerical experiments are conducted to assess the convergence of practical two‐ and multi‐level schemes. These experiments, which include problems with highly variable and rotating convective flow, indicate that the convergence is grid independent. It deteriorates moderately as the convection becomes increasingly dominating, but the convergence factor remains uniformly bounded. This conclusion is supported for both uniform and some non‐uniform (stretched) grids. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
There are two approaches for applying substructuring preconditioner for the linear system corresponding to the discrete Steklov–Poincaré operator arising in the three fields domain decomposition method for elliptic problems. One of them is to apply the preconditioner in a common way, i.e. using an iterative method such as preconditioned conjugate gradient method [S. Bertoluzza, Substructuring preconditioners for the three fields domain decomposition method, I.A.N.-C.N.R, 2000] and the other one is to apply iterative methods like for instance bi-conjugate gradient method, conjugate gradient square and etc. which are efficient for nonsymmetric systems (the preconditioned system will be nonsymmetric). In this paper, second approach will be followed and extensive numerical tests will be presented which imply that the considered iterative methods are efficient.  相似文献   

10.
Within group invariance theory we consider a constructive approach in order to define numerical transformation methods. These are initial-value methods for the solution of boundary value problems governed by ordinary differential equations. Here we consider the class of free boundary value problems governed by the most general second-order equation in normal form. For this class of problems the main theorem is concerned with the definition of an iterative transformation method. The definition of a noniterative method, applicable to a subclass of the original class of problems, follows as a corollary. Therefore, the proposed constructive approach allows us to establish a unifying framework for noniterative and iterative transformation methods.  相似文献   

11.
In this paper, we apply the modified variational iteration method (MVIM) for solving Fisher’s equations. The proposed modification is made by introducing He’s polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

12.
An Augmented Lagrangian algorithm that uses Gauss-Newton approximations of the Hessian at each inner iteration is introduced and tested using a family of Hard-Spheres problems. The Gauss-Newton model convexifies the quadratic approximations of the Augmented Lagrangian function thus increasing the efficiency of the iterative quadratic solver. The resulting method is considerably more efficient than the corresponding algorithm that uses true Hessians. A comparative study using the well-known package LANCELOT is presented.  相似文献   

13.
In [8], we proposed some numerical verification methods for automatic proof of the existence of solution for obstacle problems. In this paper we propose a new iterative algorithm to automatically prove the existence of solutions for some generalized obstacle problems.  相似文献   

14.
In this paper, we apply the modified variational iteration method (MVIM) for solving the heat and wave-like equations. The proposed modification is made by introducing He’s polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that proposed technique solves nonlinear problems without using the Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

15.
An efficient systematic iterative solution strategy for solving real-world scheduling problems in multiproduct multistage batch plants is presented. Since the proposed method has its core a mathematical model, two alternative MIP scheduling formulations are suggested. The MIP-based solution strategy consists of a constructive step, wherein a feasible and initial solution is rapidly generated by following an iterative insertion procedure, and an improvement step, wherein the initial solution is systematically enhanced by implementing iteratively several rescheduling techniques, based on the mathematical model. A salient feature of our approach is that the scheduler can maintain the number of decisions at a reasonable level thus reducing appropriately the search space. A fact that usually results in manageable model sizes that often guarantees a more stable and predictable optimization model behavior. The proposed strategy performance is tested on several complicated problem instances of a multiproduct multistage pharmaceuticals scheduling problem. On average, high quality solutions are reported with relatively low computational effort. Authors encourage other researchers to adopt the large-scale pharmaceutical scheduling problem to test on it their solution techniques, and use it as a challenging comparison reference.  相似文献   

16.
In this paper, we apply the variational iteration method using He’s polynomials (VIMHP) for solving the twelfth-order boundary-value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The suggested iterative scheme finds the solution without any discretization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

17.
A very efficient and fully discrete method for numerical solution of boundary nonlinear integral equation is described. There seems a lack of rigorous numerical analysis because of singular or hypersingular behavior. In this paper, we suggest variants of methods for solving numerical solutions. Moreover, our aim has been to show how the iterations can be effectively and efficiently regularized for solving ill-posed problems by using the preconditioner. We have compared these methods with CPU time and iterations. Finally, some numerical examples show the efficiency of the proposed methods.  相似文献   

18.
徐长发 《应用数学》1993,6(2):172-177
本文提出一种求解非线性有限元方程的逐层校正迭代法.有关数值分析表明,当网格分划较细,网格分划参数h_j较小时,仅需一次简单的迭代和校正步骤就可满足数值计算的要求,使用该方法的计算复杂性是最佳阶的,即为O(N_j),其中N_j为最细网格层上离散结点变量的数目.  相似文献   

19.
This paper is mainly devoted to a comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier–Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, we recast the Navier–Stokes problem into a first-order quasilinear velocity–vorticity–pressure system. Two Picard-type iterative least-squares finite element schemes are proposed to approximate the solution to the nonlinear first-order problem. In each iteration, we adopt the usual L 2 least-squares scheme or a weighted L 2 least-squares scheme to solve the corresponding Oseen problem and provide error estimates. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that the iterative L 2 least-squares scheme is somewhat suitable for low Reynolds number flow problems, whereas for flows with relatively higher Reynolds numbers the iterative weighted L 2 least-squares scheme seems to be better than the iterative L 2 least-squares scheme. Numerical simulations of the two-dimensional driven cavity flow are presented to demonstrate the effectiveness of the iterative least-squares finite element approach.  相似文献   

20.
In this paper, a modified Steffensen's type iterative scheme for the numerical solution of a system of nonlinear equations is studied. Two convergence theorems are presented. The numerical solution of boundary-value problems by the multiple shooting method using the proposed iterative scheme is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号