首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

2.
Summary Entry lengths for pipe flows of moderately drag reducing fluids are determined using momentum integral technique. It is shown theoretically that the entry lengths for drag reducing fluids could be significantly larger than the Newtonian fluids flowing turbulently under otherwise identical conditions. The experimental data from the literature bear out the theoretical calculations.
Zusammenfassung Mit Hilfe der Impuls-Methode wird die Einlauflänge in einer Rohrströmung für Flüssigkeiten mit mäßig starker Widerstandsverminderung berechnet. Es wird vorausgesagt, daß die Einlauflänge für derartige Flüssigkeiten erheblich größer sein kann als für newtonsche Flüssigkeiten unter sonst identischen Bedingungen. Aus der Literatur entnommene experimentelle Daten bestätigen diese theoretischen Berechnungen.

Nomenclature A 1 Coefficient in eq. [7] - A Slope of logarithmic velocity profile - a Exponent in eq. [10] - B Intercept function for logarithmic velocity profile - De Deborah number, - f Friction factor - F Function, eq. [30] - G Function given in eq. [11] - Static pressure, dynes/cm2 - q Index of power law velocity profile - R Pipe radius, cm - r Radial distance, cm - R Core radius, cm - Re Reynolds number - Axial velocity, cm/s - u c Core velocity, cm/s - u + Dimensionless velocity, eq. [5] - u * Friction velocity, , cm/s - Radial velocity, cm/s - V Average velocity, cm/s - x Axial distance, cm - x e Entry length, cm - y Distance from the wall, cm - y + Dimensionless distance, eq. [5] - y I + Dimensionless viscous sublayer thickness - coefficient in eq. [17] - exponent of Reynolds number in eq. [17] - shear rate, s–1 - boundary layer thickness, cm - fl fluid relaxation time, s - µ fluid viscosity, gm/cm s - v kinematic viscosity, cm2/s - l laminar sublayer thickness, dimensionless - fluid density, gm/cm3 - shear stress, dynes/cm2 - w shear stress at the wall, dynes/cm2 - 1, 2, 3, 4 functions in eq. [27] - ~ time averaged quantities - — dimensionless quantity With 3 figures and 1 table  相似文献   

3.
The problem of laminar, natural convection flow over a slender frustum of a cone is treated in this paper. The governing differential equations are solved by a combination of quasi-linearization and finite-difference methods. Numerical solutions are obtained for Pr=0.7 and for a range of values of the transverse curvature parameter. It is shown that the effect of transverse curvature is of great significance in such flows.
Laminare natürliche Konvektion an einem dünnen, senkrechten Kegelstumpf
Zusammenfassung In diesem Bericht ist das Problem der laminaren natürlichen Konvektionsströmung an einem dünnen Kegelstumpf behandelt. Die maßgebliche Differentialgleichung ist durch eine Verbindung von Quasilinearisation und Differenzenverfahren gelöst. Eine numerische Lösung für Pr=0.7 wird für verschiedene Werte eines Krümmungsparameters angegeben. Es ist gezeigt, daß in solchen Strömungen dieser Krümmungsparameter eine große Bedeutung besitzt.

Nomenclature f dependent variable, defined in Eq. (7) - g dependent variable, defined in Eq. (7) - ge gravitational acceleration - h heat transfer coefficient, or -grid - k heat conductivity, or -grid - L characteristic length - Nu Nusselt number - Pr Prandtl number - r radial distance from the axis of the cone - R transverse curvature effect ratio, defined in Eq. (23) - Re Reynold number - T temperature - u, v velocity components in the x- and y-directions, respectively - x, y rectangular coordinates Greek letters dimensionless temperature, definedinEq. (4) - bulk modulus - cone angle - dynamic viscosity - stream function - , independent variable, defined in (7) - transverse curvature parameter  相似文献   

4.
Summary The effect of an internal heat source on the heat transfer characteristics for turbulent liquid metal flow between parallel plates is studied analytically. The analysis is carried out for the conditions of uniform internal heat generation, uniform wall heat flux, and fully established temperature and velocity profiles. Consideration is given both to the uniform or slug flow approximation and the power law approximation for the turbulent velocity profile. Allowance is made for turbulent eddying within the liquid metal through the use of an idealized eddy diffusivity function. It is found that the Nusselt number is unaffected by the heat source strength when the velocity profile is assumed to be uniform over the channel cross section. In the case of a 1/7-power velocity expression, the Nusselt numbers are lower than those in the absence of internal heat generation, and decrease with diminishing eddy conduction. Nusselt numbers, in the absence of an internal heat source, are compared with existing calculations, and indications are that the present results are adequate for preliminary design purposes.Nomenclature A hydrodynamic parameter - a half height of channel - a 1 a constant, 1+0.01 Pr Re 0.9 - a 2 a constant, 0.01 Pr Re 0.9 - C p specific heat at constant pressure - D h hydraulic diameter of channel, 4a - h heat transfer coefficient, q w/(t wt b) - I 1 integral defined by (17) - I 2 integral defined by (18) - k diffusivity parameter, (1+0.01 Pr Re 0.9)1/2 - m exponent in power velocity expression - Nu Nusselt number, hD h/ - Nu 0 Nusselt number in absence of internal heat generation - Pr Prandtl number, / - Q heat generation rate per volume - q w wall heat flux - Re Reynolds number for channel, 2/ - s ratio of heat generation rate to wall heat flux, Qa/q w - T dimensionless temperature, (t wt)/(t wt b) - t fluid temperature, t w wall temperature, t b fluid bulk temperature - u fluid velocity in x direction, , fluid mean velocity - x longitudinal coordinate measured from channel entrance - x + dimensionless longitudinal coordinate, 2(x/a)/Pr Re - y transverse coordinate measured from channel centerline - z transverse coordinate measured from channel wall, ay - molecular diffusivity of heat, /C p - dummy variable of integration - dummy variable of integration - H eddy diffusivity of heat - M eddy diffusivity of momentum - dummy variable of integration - fluid thermal conductivity - T dimensionless diffusivity, Pr ( H/) - fluid kinematic viscosity - dummy variable of integration - fluid density - dummy variable of integration - ratio of eddy diffusivity for heat transfer to that for momentum transfer, H/ M - average value of - dimensionless velocity distribution, u/  相似文献   

5.
The rheological properties of glass fibre-filled polypropylene melts have been investigated. A high pressure capillary rheometer has been used for the experimental study. The effect of shear rate, temperature, and fibre concentration on the melt viscosity and viscoelastic properties have been studied. An equation has been proposed to correlate the melt viscosity with shear rate, temperature and fibre content. A master curve relation on this basis has been brought out using the shift factora T . a T shift factor (=/ r ) - A i coefficients of the polynomical of eq. (1) (i = 0, 1, 2, ,n) - B constant in the AFE equation (eq. (2)) (Pa s) - B constant in eq. (3) - D extrudate diameter - d capillary diameter - activation energy at constant shear rate (kcal/mole) - E activation energy at constant shear stress (kcal/mole) - T melt temperature (K) - X fraction glass fibre by weight - shear rate (s–1) - shear viscosity (Pa s) - normal stress coefficient (Pa s2) - 1 2 first normal-stress difference (Pa) - shear stress (Pa) - r at reference temperature  相似文献   

6.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

7.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

8.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

9.
Laminar mixed convection over a horizontal plate with uniform wall temperature or uniform wall heat flux is analyzed by introducing proper buoyancy parameters and transformation variables for fluids of any Prandtl number between 0.001 and 10,000. Both cases of buoyancy assisting and opposing flow conditions are investigated. For the buoyancy-assisting case, the obtained numerical results are very accurate over the entire range of mixed convection intensity from pure forced convection limit to pure free convection limit. For the buoyancy-opposing case, solutions are obtained from the forced convection limit to the point of breakdown.
Mischkonvektion an einer horizontalen Platte für Fluide mit beliebiger Prandtl-Zahl
Zusammenfassung Es wurde laminare Mischkonvektion an einer horizontalen Platte mit einheitlicher Wandtemperatur oder einheitlicher Wandwärmestromdichte bei Einführung zweckmäßiger Auftriebsparameter und Transformationsvariablen für Fluide mit beliebiger Prandtl-Zahl zwischen 0,001 und 10 000 untersucht. Es wurden die Fälle der Strömung entgegen und in Richtung der Auftriebskraft untersucht. Für den Fall der Strömung in Richtung der Auftriebskraft wurden sehr genaue numerische Ergebnisse für den gesamten Bereich der gemischten Konvektion von rein erzwungener Konvektion bis zu rein freier Konvektion erhalten. Für den Fall der Strömung entgegen der Auftriebsrichtung wurden Lösungen für erzwungene Konvektion bis zum Umkehrpunkt erhalten.

Nomenclature C f local friction coefficient - f reduced stream function - g gravitational acceleration - Gr local Grashof number for UWT,g (T w T )x 3/ 2 - Gr* local Grashof number for UHF,g q w x 4/k 2 - m =10 for UWT; and =6 for UHF - n =5 for UWT; and =3 for UHF - Nu local Nusselt number - p pressure - Pr Prandtl number,/ - q w wall heat flux - Ra local Rayleigh number for UWT,Gr Pr - Ra* local Rayleigh number for UHF,Gr*Pr - Re local Reynolds number,u x/ - T fluid temperature - T w wall temperature - T free-stream temperature - u velocity component inx-direction - u free-stream velocity - v velocity component iny-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - =0 for UWT; and =1 for UHF - buoyancy parameter, =( Ra)1/5/( Re)1/2 for UWT; and =( Ra*)1/6/( Re)1/2 for UHF - pseudo-similarity variable, (y/x) - dimensionless temperature, =(TT )/(T w T ) for UWT; and =(TT )/(q w x/k) for UHF - =[( Re)1/2+( Ra)1/5] for UWT; and =[( Re)1/2+( Ra*)1/6] for UHF - dynamic viscosity - kinematic viscosity - /(1+) - dimensionless pressure - density - Pr/(1+Pr) - w wall shear stress,(u/y) y=0 - stream function - Pr/(1+Pr)1/3  相似文献   

10.
The results of an analytical approximation method to predict the film vaporization are compared with the predictions of a finite difference method of Hermitian type. The analytically estimated rate of vaporization of different hydrocarbons, which is the most important value for practical applications, deviates only a few percents from the numerically estimated value.
Zur Berechnung der Filmverdunstung von Kohlenwasserstoffen in einem Heißluftstrom
Zusammenfassung Es wird ein Näherungsverfahren zur Berechnung der Filmverdunstung dargestellt, bei dem eine vollständige Lösung der miteinander gekoppelten Grenzschichtgleichungen entfallt. Die nach dieser analytischen Methode ermittelte Verdunstung verschiedener Kohlenwasserstoffe wird mit Werten verglichen, die nach einem Differenzenverfahren vom Hermiteschen Typ berechnet wurden. Es zeigt sich, daß die analytisch berechnete Verdunstungsrate, die für praktische Anwendungen wichtigste Größe, nur wenige Prozent von dem numerisch ermittelten Wert abweicht.

Formelzeichen c ew Konzentrationsdifferenz c1e -c 1w - c i Massenkonzentration der Komponentei - cp, cpi spezifische Wärmekapazität bei konstantem Druck des Gemisches — der Komponentei - D 12 binärer Diffusionskoeffizient - f dimensionslose Stromfunktion - f dimensionslose Geschwindigkeit - g () allgemeine Funktion - m 1 Massenstromdichte der Komponente 1 - m * dimensionslose Massenstromdichte, G1. (4.8) - M, Mi Molgewicht, — der Komponentei - P, P i Druck, Partialdruck der Komponentei - Pr Prandtlzahl,C p/ - q Wärmestromdichte - r 1 Verdampfungswärme - R allgemeine Gaskonstante - Sc Schmidtzahl/D 12 - T absolute Temperatur - u Geschwindigkeitskomponente inx-Richtung - v Geschwindigkeitskomponente iny-Richtung - x Längskoordinate - y Querkoordinate - z dimensionslose Konzentration - dimensionslose Funktion/ e e - transformierte Koordinatey - dimensionslose Temperatur (T-T w)/(Te-Tw) - Wärmeleitfähigkeit des Gemisches - Zähigkeit des Gemisches - transformierte Koordinate - Dichte des Gemisches - Stromfunktion Indizes e am Außenrand der Grenzschicht - i Stoffi - w an der Filmoberfläche - 1, 2 Komponente 1, 2 - () Ableitung ()/ n   相似文献   

11.
Zusammenfassung Der Übergang eines Stoffes zwischen zwei fluiden Phasen wird betrachtet, von denen sich einer als Strahl in der anderen bewegt. Die Geschwindigkeit der laminar strömenden Phase wird durch eine Gleichung ausgedrückt, die Geschwindigkeitsprofile zwischen der Kolben- und der Rohrströmung kontinuierlich beschreibt. Der Transport des Stoffes im Strahl durch Diffusion in radialer und durch Konvektion in axialer Richtung wird für den isothermen, stationären Fall untersucht. Die das Problem beschreibende Differentialgleichung wird anscheinend erstmals geschlossen gelöst. Die Lösungen beinhalten konfluente hypergeometrische Funktionen. Berechnet werden Eigenwerte, Koeffizienten, örtliche und mittlere Konzentrationsfelder sowie Stoffübergangszahlen.
Mass transfer between two fluids, one of the two fluids is moving as jet within the other
The mass transfer between two fluids is calculated, one of the two fluids is moving as a jet within the other. The velocity of the laminar flowing phase is expressed by an equation, which describes continously the velocity profiles from plug flow to tubular flow. For the isothermal, stationary state the transport of substance i by radial diffusion and by axial convection is investigated. It appears to be that the differential equations describing the problem are solved rigorously for the first time. The solutions contain confluent hypergeometrical functions. Results include eigenvalues, coefficients, local and mean concentration fields, mass transfer numbers.

Verwendete Zeichen und ihre Bedeutung a - A, An Koeffizienten - B, Bn Koeffizienten - c Konzentration, Konstante im Anhang - Cr=0 Mittenkonzentration - c0 Konzentration in Phase I bis z=0 - cII Konzentration in Phase II - ¯c mittlere Konzentration, definiert in Gl. (35) - C Koeffizient, definiert in Gl. (A 21) - D Diffusionskoeffizient - Da Damköhlerzahl - E Funktion, gegeben durch Gl. (A 12) - f, f(R) Funktion f von R - fn, fn (R) Funktionswerte - g, g(Z) Funktion g von Z - gn, gn (Z) Funktionswerte - h(Z) Funktion h von z - Hq Koeffizienten, gegeben durch Gl. (A 10) - j Massenstromdichte - J k , Jq Besselfunktion der Ordnungk, q - k definiert durch Gl. (A 9) - n laufende Zahl - m laufende Zahl - p laufende Zahl - Pe=Re·Sc Pecletzahl - q laufende Zahl - Qn Koeffizienten, definiert in Gl. (31) - r radiale Koordinate - r0 Radius - R r/r0 - Re=u0r0/ Reynoldszahl - S=2r0z Zylinderfläche - Sc=/D Schmidtzahl - Sh=2r0 /D Sherwoodzahl - Sherwoodzahl, definiert in Gl. (52) - Shu Sherwoodzahl, definiert in Gl. (54) - Shz Sherwoodzahl, definiert in Gl. (40) - Sherwoodzahl, definiert in Gl. (45) - t R2 - u Geschwindigkeit - u0 maximale Geschwindigkeit - v - Volumenstrom - w Variable - x Variable - y abhängige Variable - z axiale Koordinate, Lauflänge - Z z/r0 - ZPe dimensionslose Lauflänge, definiert durch Gl. (34) - an Koeffizienten, definiert durch Gl. (A 19) - Stoffübergangskoeffizient - Stoffübergangskoeffizient, definiert in Gl. (48) - u Stoffübergangskoeffizient, definiert in Gl. (49) - z Stoffübergangskoeffizient, definiert in Gl. (38) - Stoffübergangskoeffizient, definiert in Gl. (44) - definiert in Gl. (A 21) - Gammafunktion - c Konzentrationsdifferenz - m Stoffmenge - Zahl zwischen Null und Eins - laufende Zahl - kinematische Zähigkeit - (v) (t) - konfluente hypergeometrische Funktion - (t) - konfluente hypergeometrische Funktion - , n Eigenwerte Hochzeichen - * kennzeichnet asymptotische Lösungen  相似文献   

12.
Summary The paper presents the phenomenon of thioxotropy from the point of view of the theory of fluids with fading memory. In the first part of the paper the mechanism of thixotropy was discussed in order to justify the application of the concept of structural parameter (this parameter occurs in the previously presented rheological model of thixotropic materials). In the second part of the paper an equation was derived, which enables the prediction of the mean value of the friction factor during the flow of a thixotropic fluid in a pipe. According to the obtained equation the friction factor is a function of three dimensionless numbers: the generalized Reynolds number, a modified Deborah number and a new dimensionless number which may be called a structural number. The preliminary experimental results confirmed the applicability of the obtained equation.
Zusammenfassung Die Veröffentlichung behandelt das Phänomen der Thixotropie vom Standpunkt der Theorie der Flüssigkeiten mit schwindendem Gedächtnis. Im ersten Teil wird der Mechanismus der Thixotropie untersucht und die Einführung eines sog. Strukturparameters begründet (dieser Parameter kommt bereits in dem früher behandelten rheologischen Modell eines thixotropen Körpers vor). Im zweiten Teil wird dann eine Formel abgeleitet, welche die Voraussage des mittleren Wertes des Widerstandskoeffizienten bei der Strömung einer thixotropen Flüssigkeit durch ein Rohr ermöglicht. Dieser Formel gemäß ist der Widerstandskoeffizient eine Funktion von drei dimensionslosen Zahlen: einer verallgemeinerten Reynolds-Zahl, einer modifizierten Deborah-Zahl und einer neuen dimensionslosen Zahl, die als Struktur-Kennzahl bezeichnet werden kann. Die vorläufigen Versuchsergebnisse bestätigen die Brauchbarkeit der abgeleiteten Formel.

a rheological parameter in eq. [1], s–1 - A rheological parameter in eq. [1]; function defined in eq. [15] - b rheological parameter in eq. [1] - B constant in eq. [15] - c rheological parameter in eq. [4] - c function defined in eq. [4] - C function defined in eq. [48] (see also eq. [43]) - D pipe diameter,m - K 1,K2 coefficients of proportionality in eq. [6] - k rheological parameter in eq. [12], Nsn/m2 - k * rheological parameter in eq. [1], Nsm/m2 - L pipe length, m - m rheological parameter in eq. [1] - n rheological parameter in eq. [12] - N number of particles in unit volume - p pressure, Pa - p 0 pressure at the pipe entrance, Pa - r radial coordinate, m - R pipe radius, m - s rheological parameter in eq. [1] - t time, s - u z axial local velocity in the pipe, m/s - v mean linear velocity in the pipe, m/s - z axial coordinate, m - rheological parameter in eq. [5], = 1 s - shear rate, s–1 - nominal shear rate defined by eq. [39], s–1 - structural parameter - substantial derivative of structural parameter, s–1 - e equilibrium structural parameter in eqs. [2] and [5] - en nominal structural parameter - 0 initial value of structural parameter - function of natural time - mean value of natural time, s - shear stress, Pa - 0 shear stress field atZ = 0 (at pipe entrance) - y0 equilibrium yield stress, Pa - shear stress field atz - fluid density, kg/m3 - v number of bonds in an average aggregate - mean value of the friction factor - De modified Deborah number defined by eq. [46] - Re generalized Reynolds number defined by eq. [45] - Se structural number defined by eq. [41a] With 4 figures and 1 table  相似文献   

13.
The distribution of droplets in a plane Hagen-Poiseuille flow of dilute suspensions has been measured by a special LDA technique. This method assumes a well defined relation between the velocity of the droplets and their lateral position in the channel. The measurements have shown that the droplet distribution is non-uniform and depends on the viscosity ratio between the droplets and the carrier liquid. The results have been compared with a theory by Chan and Leal describing the lateral migration of suspended droplets.List of symbols a particle radius, m - d half width of the channel, m - Re flow Reynolds number, = 2 m · d · /µ - flow velocity, m/s - m flow velocity at the channel axis, m/s - We Weber number, = 2 m Emphasis>/2 · d · / - x distance from center line (x = 0) of the channel, m - non-dimensional distance from the channel center line, x d - y distance along the channel (y = 0 at channel inlet), m - non-dimensional distance along the channel, = y/2d - non-dimensional, normalized distance along the channel, = · m · µ/ - interfacial tension, N/m - viscosity ratio of dispersed (droplet) phase to viscosity of continuous phase - µ viscosity of continuous phase, Pa · s - density of continuous phase, kg/m3 - phase density difference, kg/m3 Experiments were performed at Max-Planck-Institut, Göttingen  相似文献   

14.
The results of investigations of inviscid flow over inverted cones with nose consisting of a spherical segment were published for the first time in Soviet literature in [1–4]. In the present paper, a numerical solution to this problem is obtained using the improved algorithms of [5, 6], which have proved themselves well in problems of exterior flow over surfaces with positive angles of inclination to the oncoming flow. It is shown that the Mach number 2 M , equilibrium and nonequilibrium physicochemical transformations in air (H = 60 km, V = 7.4 km/sec, R0 = 1 m), and the angle of attack 0 40° influence the investigated pressure distributions. A comparison of the results of the calculations with drainage experiments for M = 6, = 0-25° confirms the extended region of applicability of the developed numerical methods. Also proposed is a simple correlation of the dependence on the Mach number in the range 1.5 M of the shape of the shock wave near a sphere in a stream of ideal gas with adiabatic exponent = 1.4.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 178–183, January–February, 1981.  相似文献   

15.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

16.
Calculations of the flow of the mixture 0.94 CO2+0.05 N2+0.01 Ar past the forward portion of segmentai bodies are presented. The temperature, pressure, and concentration distributions are given as a function of the pressure ahead of the shock wave and the body velocity. Analysis of the concentration distribution makes it possible to formulate a simplified model for the chemical reaction kinetics in the shock layer that reflects the primary flow characteristics. The density distributions are used to verify the validity of the binary similarity law throughout the shock layer region calculated.The flow of a CO2+N2+Ar gas mixture of varying composition past a spherical nose was examined in [1]. The basic flow properties in the shock layer were studied, particularly flow dependence on the free-stream CO2 and N2 concentration.New revised data on the properties of the Venusian atmosphere have appeared in the literature [2, 3] One is the dominant CO2 concentration. This finding permits more rigorous formulation of the problem of blunt body motion in the Venus atmosphere, and attention can be concentrated on revising the CO2 thermodynamic and kinetic properties that must be used in the calculation.The problem of supersonic nonequilibrium flow past a blunt body is solved within the framework of the problem formulation of [4].Notation V body velocity - shock wave standoff - universal gas constant - ratio of frozen specific heats - hRt/m enthalpy per unit mass undisturbed stream P pressure - density - T temperature - m molecular weight - cp specific heat at constant pressure - (X) concentration of component X (number of particles in unit mass) - R body radius of curvature at the stagnation point - j rate of j-th chemical reaction shock layer P V 2 pressure - density - TT temperature - mm molecular weight Translated from Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 5, No. 2, pp. 67–72, March–April, 1970.The author thanks V. P. Stulov for guidance in this study.  相似文献   

17.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   

18.
Summary The problem of heat transfer in a two-dimensional porous channel has been discussed by Terrill [6] for small suction at the walls. In [6] the heat transfer problem of a discontinuous change in wall temperature was solved. In the present paper the solution of Terrill for small suction at the walls is revised and the whole problem is extended to the cases of large suction and large injection at the walls. It is found that, for all values of the Reynolds number R, the limiting Nusselt number Nu increases with increasing R.Nomenclature stream function - 2h channel width - x, y distances measured parallel and perpendicular to the channel walls respectively - U velocity of fluid at x=0 - V constant velocity of fluid at the wall - =y/h nondimensional distance perpendicular to the channel walls - f() function defined in equation (1) - coefficient of kinematic viscosity - R=Vh/ suction Reynolds number - density of fluid - C p specific heat at constant pressure - K thermal conductivity - T temperature - x=x 0 position where temperature of walls changes - T 0, T 1 temperature of walls for x<x 0, x>x 0 respectively - = (TT 1)/T 0T 1) nondimensional temperature - =x/h nondimensional distance along channel - R * = Uh/v channel Reynolds number - Pr = C p/K Prandtl number - n eigenvalues - B n() eigenfunctions - B n (0) , () eigenfunctions for R=0 - B 0 (i) , B 0 (ii) ... change in eigenfunctions when R0 and small - K n constants given by equation (13) - h heat transfer coefficient - Nu Nusselt number - m mean temperature - C n constants given by equation (18) - perturbation parameter - B 0i () perturbation approximations to B 0() - Q = B 0/ 0 derivative of eigenfunction with respect to eigenvalue - z nondimensional distance perpendicular to the channel walls - F(z) function defined by (54)  相似文献   

19.
Summary Previous work on the creeping flow of viscoelastic fluids past a sphere is reviewed. Theoretical analyses available in the literature were obtained for weakly elastic fluids and therefore they predict only a small influence of fluid elasticity on the drag. In this paper, an approximate theoretical analysis is given for the creeping flow past a rigid sphere in an unbounded medium. The analysis uses a variational principle to solve the equations of motion and continuity in conjunction with the Carreau constitutive equation. The theoretical results are presented in terms of a correction factor to the Newtonian drag coefficient. The correction factor is a function of the power law flow behaviour indexn, the ratio of limiting viscosities ( 0)/0 and a dimensionless time which reflects the elastic nature of the fluids. The results are presented in graphical form covering a realistic range of these dimensionless groups.In order to verify the theoretical predictions, the drag coefficient of a number of spheres was measured in a series of shear thinning elastic test fluids. The flow properties of the test fluids were independently measured with a Weissenberg Rheogoniometer. The power law index of the test fluids varied between 1.0 and 0.4. Particle Reynolds number based on 0 was in the range of 410–6 to 410–2. The difference between theoretically predicted values of drag coefficient and the experimentally measured values is less than ±7.5%. In addition, it is found that the Carreau viscosity equation can be used to predict the elastic parameter of primary normal stress difference with moderate to good accuracy for all the polymer solutions used in this work.
Zusammenfassung Einleitend wird ein Überblick über die früheren Untersuchungen betreffend die schleichende Strömung um eine Kugel gegeben. Die in der Literatur vorliegenden theoretischen Analysen sind auf schwach viskoelastische Flüssigkeiten beschränkt und sagen deshalb nur einen geringen Einfluß der Elastizität auf den Widerstand voraus. In dieser Veröffentlichung wird dagegen eine genäherte theoretische Analyse für die schleichende Strömung um eine starre Kugel in einem unendlich ausgedehnten Medium gegeben, bei welcher zur Lösung der Bewegungsgleichungen und der Kontinuitätsgleichung in Verbindung mit den rheologischen Stoffgleichungen vonCarreau ein Variationsprinzip verwendet wird. Die theoretischen Ergebnisse werden mittels eines Korrekturfaktors zum newtonschen Widerstandskoeffizienten beschrieben. Dieser Korrekturfaktor ist eine Funktion des Potenz-Gesetz-Exponentenn, des Verhältnisses der Grenzviskositäten ( 0)/0 und einer dimensionslosen Zeit, welche das elastische Verhalten kennzeichnet. Die Ergebnisse werden in graphischer Form unter Zugrundelegung eines realistischen Wertebereichs dieser dimensionslosen Gruppen dargestellt.Um diese theoretischen Voraussagen zu verifizieren, wurde der Widerstandskoeffizient für eine Anzahl von Kugeln in einer Reihe von Scherentzähung aufweisenden elastischen Probeflüssigkeiten gemessen. Die Fließeigenschaften dieser Flüssigkeiten wurden zusätzlich mit dem Weissenberg-Rheogoniometer bestimmt. Der Potenz-Gesetz-Exponent variierte dabei zwischen 1,0 und 0,4. Die auf den Kugeldurchmesser und die Nullviskosität bezogenen Reynolds-Zahlen lagen zwischen 410–6 und 410–2. Der Unterschied zwischen theoretisch vorausgesagten und experimentell bestimmten Widerstandskoeffizienten war kleiner als ±7,5%. Außerdem wurde noch gefunden, daß die Viskositätsgleichung vonCarreau dazu verwendet werden kann, den elastischen Parameter erste Normalspannungs-Differenz für alle in dieser Untersuchung verwendeten Polymerlösungen mit mäßiger bis guter Genauigkeit vorauszusagen.

Notation C d drag coefficient - d diameter of sphere - f external body forces in equation of motion [2] - F d drag force - g acceleration due to gravity - J integral defined in eq. [3] - n a parameter in the Carreau viscosity eq. [6] - p isotropic pressure term in equation of motion [2] - r,, spherical coordinates - R radius of sphere - Re 0, Re1 Reynolds numbers defined in eq. [16] - t time - u i ,u j velocities in equation of motion [2] - u r ,u r and components of velocity - V terminal velocity of sphere in unbounded medium - V volume, in eq. [3] - X correction factor to the drag force, eq. [14] - y,z dimensionless spherical coordinates, eq. [9] - ratio of two Reynolds numbers given by eq. [16] - shear rate - apparent viscosity - 0, zero shear rate and infinite shear rate viscosities respectively - a parameter in the Carreau viscosity eq. [6] - the dimensionless time, defined in eq. [11] - second invariant of the rate of deformation tensor - a parameter in the stream function, eq. [8] - stream function - p,f densities of sphere and fluid respectively With 7 figures and 1 table  相似文献   

20.
For a smooth, bounded domain R, n 3, and a real, positive parameter, we consider the hyperbolic equationu tt +u t u=–f(u)g in with Dirichlet boundary conditions. Under certain conditions onf, this equation has a global attractorA inH 0 1 () ×L 2(). For=0, the parabolic equation also has a global attractor which can be naturally embedded into a compact setA 0 inH 0 1 () ×L 2(). If all of the equilibrium points of the parabolic equation are hyperbolic, it is shown that the setsA are lower semicontinuous at=0. Moreover, we give an estimate of the symmetric distance betweenA 0 andA .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号