首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational fluid dynamics (CFD) is used to study the gas–particle heat transfer in gas‐phase olefin polymerizations. Particularly, the effects of particle rotation on the gas–particle heat transfer coefficient and internal particle temperatures are evaluated, showing that particle rotation can exert a significant impact on observed temperature profiles, so that this effect should not be neglected during detailed CFD process simulations. As a consequence, particle rotation can lead to particle cooling and development of spherical gradient symmetry, validating the use of simpler modeling schemes that are based on reaction–diffusion in symmetrical spherical geometry.

  相似文献   


2.
Polymer microgels with sizes of some tens to hundreds of micrometers can be formed with exquisite control by droplet‐based microfluidic templating. This study presents a systematic assessment of the effect of the premicrogel droplet size on the ability of production of such microgels. The focus is on two popular acrylamide‐derivatives at a fixed monomer concentration and external polymerization temperature. An exponential dependence of the success of droplet gelation on the droplet size is found, which can be rationalized in view of the balance between production and transfer of heat within and from the droplets on basis of a simple Arrhenius argument.

  相似文献   


3.
Long‐chain branching plays an important role in the performance of polyolefins (POs). The existence of a very small amount of long‐chain branches (LCBs), i.e., <1 per 10 000 carbons, can significantly improve processability of the polyolefin materials, which is highly desired for those intractable polyolefins with narrow molecular weight distribution and high degree of crystallinity. Numerous literatures have been published on the controlled synthesis of long‐chain‐branched POs. In the previous paper, the major literatures of single catalyst systems have been summarized. This paper provides a comprehensive review for the binary and multiple catalyst systems and a brief summary of some other methods for the controlled synthesis of long‐chain‐branched POs. The controllability of long‐chain‐branched structures in the various preparation procedures with single or two reactor systems, and in one or two‐step processes, is analyzed and compared in‐depth.

  相似文献   


4.
The effect of prepolymerization on ethylene homopolymerization and ethylene/1‐hexene copolymerization with a commercial TiCl4/MgCl2 catalyst was investigated and the apparent homo‐ and copolymerization rate constants were estimated by varying polymerization temperature, pressure, time, and 1‐hexene/ethylene molar ratio during the prepolymerization. The apparent rate constants for activation, propagation, and deactivation depend on the prepolymerization conditions, showing that the prepolymerization stage strongly regulates the behavior of the catalyst in the main polymerization. Interestingly, the surface morphology of the prepolymer particles correlates to and explains these changes in polymerization kinetics behavior.

  相似文献   


5.
In this article a systematic method is proposed to deconvolute the time‐dependent molecular weight distributions (MWD) and average comonomer fraction profiles of ethylene/1‐olefin copolymers made with heterogeneous Ziegler–Natta catalysts. These distributions with a high‐temperature gel permeation chromatography equipped with an infrared detector at four different polymerization times have been measured and used this information to infer how the fractions of polymer made on each site type varied with polymerization time. The model estimates here the minimum number of active site types needed to describe these copolymers, the MWD of polymer populations made on each site type, and their average comonomer fractions. This method is useful to quantify the microstructure of olefin copolymers made with multiple site type catalysts using the least number of adjustable parameters.

  相似文献   


6.
A kinetic model for the radical homopolymerization of acrylamide in aqueous solution is developed, incorporating propagation and termination rate coefficients as functions of monomer concentration and including the formation and reaction of midchain radicals based on the insights and measured rate coefficients from recent pulsed‐laser studies. The model successfully represents the batch conversion profiles measured using an in situ NMR technique between 40 and 70 °C with initial monomer concentrations of 5 to 40 wt%, as well as the associated polymer molar mass distributions. In particular, the model captures the decreased rate that occurs at lowered monomer concentrations as a result of the formation of less‐active midchain radicals by backbiting. Previous literature data are also well represented by the model.

  相似文献   


7.
A new way to fabricate monodisperse polymer particles in a microfluidic device without UV‐light and without the need for high temperatures is described in this article. By applying an activator regeneration by electron transfer ‐ atom transfer radical polymerization (ARGET‐ATRP) initiator system in a co‐capillary microfluidic setup and by separating the monomer mixture in an initiator and a catalyst phase, a fast polymerization of the droplets at low temperature without premature curing and thus clogging of the capillaries can be achieved. The influence of the flow rates on the particle sizes and their polydispersity as well as the controlled character of the polymerization are investigated. The particle size is well adjustable, but the reaction is not controlled due to the high radical concentration needed for rapid polymerization. In addition, particles with incorporated UV‐dyes are produced as a proof of concept at low temperature.

  相似文献   


8.
Two artificial neural network models (forward and inverse) are developed to describe ethylene/1‐olefin copolymerization with a catalyst having two site types using training and testing datasets obtained from a polymerization kinetic model. The forward model is applied to predict the molecular weight and chemical composition distributions of the polymer from a set of polymerization conditions, such as ethylene concentration, 1‐olefin concentration, cocatalyst concentration, hydrogen concentration, and polymerization temperature. The results of the forward model agree well with those from the kinetic model. The inverse model is applied to determine the polymerization conditions to produce polymers with desired microstructures. Although the inverse model generates multiple solutions for the general case, unique solutions are obtained when one of the three key process parameters (ethylene concentration, 1‐olefin concentration, and polymerization temperature) is kept constant. The proposed model can be used as an efficient tool to design materials from a set of polymerization conditions.

  相似文献   


9.
A visible light and pH responsive anticancer drug delivery system based on polymer‐coated mesoporous silica nanoparticles (MSNs) has been developed. Perylene‐functionalized poly(dimethylaminoethyl methacrylates) sensitive to visible light and pH are electrostatically attached on the surface of MSNs to seal the nanopores. Stimulation of visible light and acid can unseal the nanopores to induce controlled drug release from the MSNs. More interestingly, the release can be enhanced under the combined stimulation of the dual‐stimuli. The synergistic effect of visible light and acid stimulation on the efficient release of anticancer drugs from the nanohybrids endows the system with great potential for cancer therapy.

  相似文献   


10.
An efficiently siRNA transporting nanocarrier still remains to be developed. In this study, utilizing the dual stimulus of acid tumor extracellular environment and redox effect of glutathione in the cytosol, a new siRNA transporting system combining triple effects of folate targeting, acid sensitive polymer micelles, and bio‐reducible disulfide bond linked siRNA‐cell penetrating peptides (CPPs) conjugate is developed to suppress c‐myc gene expression of breast cancer (MCF‐7 cells) both in vitro and in vivo. Subsequent research demonstrates that the vesicle has particle size of about 100 nm and siRNA entrapment efficiency of approximately 80%. In vitro studies verified over 90% of encapsulated siRNA‐CPPs can be released and the vesicle shows higher cellular uptake in response to the tumorous zone. Determination of gene expression at both mRNA and protein levels indicates the constructed vesicle exhibited enhanced cancer cell apoptosis and improved therapeutic efficacy in vitro and in vivo.

  相似文献   


11.
Amphiphilic triblock copolymers mPEG‐b‐PMAC‐b‐PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε‐caprolactone. Copolymers are self‐assembled into core–shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X‐ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.

  相似文献   


12.
This article proposes a method to quantify the polymerization kinetics of ethylene and α‐olefins with commercial TiCl4/MgCl2 Ziegler–Natta catalysts. The method determines the leading apparent polymerization kinetic constants for each active site in a Ziegler–Natta catalyst by simultaneously fitting the instantaneous polymerization rate, cumulative polymer yield, and polymer molecular weight distribution measured at different times during a series of semi‐batch polymerization experiments. This approach quantifies the behavior of olefin polymerization with multisite catalysts using the least number of adjustable parameters needed to consistently model polymerization kinetics and polymer microstructural data.

  相似文献   


13.
Chain‐shuttling polymerization with dual catalysts has introduced a new class of polyolefins called olefin block copolymers (OBCs). A dynamic Monte Carlo model to describe the kinetics of chain‐shuttling copolymerization in a semi‐batch reactor is developed, and used it to study how the microstructure of OBCs with different numbers of blocks per chain evolves during polymerization. The model also describes how chain‐shuttling rate constants and concentration of chain‐shuttling agent affect populations of OBCs with different numbers of blocks per chain. These model predictions are useful to make OBCs with precisely designed microstructures.

  相似文献   


14.
The model and methodology for estimating diffusion‐controlled rate coefficients for the methyl methacrylate (MMA) polymerization system is extended to the vinyl acetate (VAc) case. Comparison of the kinetic behavior and termination rate coefficients (kt) of both monomers suggests that at low conversions the termination reaction is controlled by the chemical step, whereas at moderate and high conversions it is controlled by the diffusive step which in turn is determined by the segmental diffusion of the long radicals and not by the center of mass diffusion of short radicals. It is found that, for most of the conversion range, diffusion coefficient for VAc is lower than the one for MMA notwithstanding that ktVAc > ktMMA. An explanation of this apparent inconsistency on the base of the model results and in terms of segmental mobility is proposed.

  相似文献   


15.
In this work, a mathematical model is developed to characterize the batch atom transfer radical suspension polymerization (batch suspension ATRP). For the first time, the morphological and molecular properties of particles, as well as their dynamics in methyl methacrylate ATRP can be simultaneously simulated by solving the model that consists of ATRP kinetic equations, moment equations, a phase equilibrium equation for calculating equilibrium monomer distributions in various phases, and a particle population balance model. The proposed model is verified using the open experimental data. Based on the verified model, two key operating factors including the ratios of monomer to initiator and water to monomer are studied in order to investigate the batch suspension ATRP kinetics. In addition, the model is also used to predict the droplet/particle size distribution. The effects of breakage rate, coalescence rate, and agitation speed on the droplet volume density distribution and the Sauter mean diameter are discussed in details. The simulated results demonstrate that the coupled model can describe the batch suspension ATRP kinetics and its droplet kinetics.

  相似文献   


16.
Reversible‐deactivation radical polymerization (RDRP) techniques have received lots of interest for the past 20 years, not only owing to their simple, mild reaction conditions and broad applicability, but also their accessibility to produce polymeric materials with well‐defined structures. Modeling is widely applied to optimize the polymerization conditions and processes. In addition, there are numerous literatures on the kinetic and reactor models for RDRP processes, which show the accessibility on polymerization kinetics insight, process optimization, and controlling over chain microstructure with predetermined molecular weight and low dispersity, copolymer composition distribution, and sequence distribution. This review highlights the facility of the method of moments in the modeling field and presents a summary of the present state‐of‐the‐art and future perspectives focusing on the model‐based RDRP processes based on the method of moments. Summary on the current status and challenges is discussed briefly.

  相似文献   


17.
The preparation of forced gradient polymers has received considerable attention using batch reactors, while the preparation of usable quantities of forced gradient copolymers using continuous flow reactors has been hampered by the need to vary the composition of the monomer feedstock continuously during the reaction. A reactor that allows for addition of a monomer feedstock continuously at all points along the length of the reactor tubing allows for the preparation of forced gradient copolymers in continuous flow reactors, allowing for the scale‐up and bulk preparation of these polymers. This study reports here the initial investigation of preparing forced gradient copolymers using the reversible addition–fragmentation chain transfer methodology in tube‐in‐tube continuous flow reactors.

  相似文献   


18.
The photopolymerization of acrylated oligomers dispersed in an aqueous medium is successfully demonstrated using a simple continuous photoreactor designed with flexible tubing, which presents straightforward up‐scaling and maintenance features. The performance of the continuous photoreactor is assessed by varying the length of the tube exposed to ultraviolet light as well as the flow rate of the aqueous dispersion thr ough the reactor. The insoluble nature of the dispersed particles after in‐situ photo‐crosslinking is particularly suitable for the estimation of the actual number of polymerized particles from static and dynamic light scattering data. The procedure is discussed in detail. Along with the overall acrylate double bond conversion of the particles determined by infrared spectroscopy, an estimation of the average conversion per polymerized particle is provided as a function of the exposure time to ultraviolet light. The sub‐microscopic characterization by peak‐force tapping atomic force microscopy of the particles after photopolymerization is also presented.

  相似文献   


19.
In this study a framework consisting of a computational fluid dynamics simulation coupled to a population balance model for the modeling of emulsion polymerizations is proposed. The combined approach is used to understand the impact of changing length and time scales, as well as mixing conditions on the particle size distribution (PSD) of a polymer latex under different conditions. It is shown that the effect of agitation rate can have a profound impact on the distribution of ionic species in the reactor, and thus on the evolution of the PSD.

  相似文献   


20.
Cellulose nanocrystals (CNCs) are renewable, nontoxic and naturally available organic nanoparticles derived from cellulosic resources such as cotton and wood pulp. Poly(n‐butyl acrylate‐co‐methyl methacrylate)/CNC latexes are successfully synthesized via in situ emulsion polymerization. The effect of CNC loading on overall conversion, polymer particle size, glass transition temperature (Tg), gel content, latex viscosity, and storage and loss moduli of dried latex are studied. While the effect of CNC content on overall conversion, polymer particle size, and Tg of the resulting latexes is negligible, significant increase in gel content, latex viscosity, and storage and loss moduli are observed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号