共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Elise Gugain Yohann Guillaneuf Julien Nicolas 《Macromolecular rapid communications》2015,36(13):1227-1247
Nitroxide‐mediated polymerization (NMP) is one of the most powerful reversible deactivation radical polymerization techniques and has incredibly gained in maturity and robustness over the last decades. However, control of methacrylic esters is one of the different aspects of NMP that still requires improvement. This family of monomers always represented an important challenge for NMP, despite the many different nitroxide structures that have been designed over the course of time. This Review aims to present the most successful strategies directed toward the control of the NMP technique of methacrylic esters and especially methyl methacrylate. NMP‐derived materials comprising uncontrolled methacrylate segments will also be discussed.
3.
Gaël Laruelle Jeanne Franois Laurent Billon 《Macromolecular rapid communications》2004,25(21):1839-1844
Summary: Amphiphilic diblock copolymers consisting of a hydrophilic block, poly(acrylic acid), and a hydrophobic block, polystyrene, were synthesized by direct nitroxide‐mediated polymerization using the PS block as a macro‐initiator for the first time. Several techniques were used to characterize the amphiphilic block copolymers (size exclusion chromatography, NMR spectroscopy). The proposed method can lead to samples with a broad range of composition and molar mass. Preliminary studies of their self‐assembly in aqueous medium using fluorescence spectroscopy and small‐angle neutron scattering are presented.
4.
This review article describes the preparation of polymer brushes by nitroxide‐mediated radical polymerization using either the ‘grafting to’ or the ‘grafting from’ approach. The use of TEMPO as a classical initiator is intensively described. More sophisticated nitroxides are also included in the discussion. Brush formation on flat surfaces such as wafers and also on particles is reported. Finally, some applications of polymer brushes are presented.
5.
Alternating Copolymerization by Nitroxide‐Mediated Polymerization and Subsequent Orthogonal Functionalization 下载免费PDF全文
Matthias Tesch Johannes A. M. Hepperle Henning Klaasen Matthias Letzel Prof. Dr. Armido Studer 《Angewandte Chemie (International ed. in English)》2015,54(17):5054-5059
A novel method for the preparation of functionalized alternating copolymers is presented. Nitroxide‐mediated polymerization of hexafluoroisopropyl acrylate with 7‐octenyl vinyl ether provides the corresponding alternating polymer, which can be chemically modified using two orthogonal polymer‐analogous reactions. A thiol–ene click reaction followed by amidation provides dual‐functionalized alternating copolymers. The potential of this method is illustrated by the preparation of a small library (15 examples) of functionalized alternating copolymers. 相似文献
6.
Guillaume Delaittre Maud Save Bernadette Charleux 《Macromolecular rapid communications》2007,28(15):1528-1533
Self‐stabilized nanoparticles with a temperature‐responsive poly[(N,N‐diethylacrylamide)‐co‐(N,N′‐methylenebisacrylamide)] microgel core and a covalently attached hairy shell were synthesized via a simple nitroxide‐mediated controlled free‐radical aqueous dispersion polymerization, using a poly(sodium acrylate) alkoxyamine macroinitiator. With this method, high solid content, surfactant‐free particle suspensions were prepared, with diameter ranging from 49 to 118 nm at high temperature, and able to reversibly swell with water at low temperature. The proposed method requires a limited number of reagents in a simple polymerization procedure and thus avoids many drawbacks generally encountered in the synthesis of thermally responsive microgel particles.
7.
John W. Ma Michael F. Cunningham Kim B. McAuley Barkev Keoshkerian Michael K. Georges 《Macromolecular theory and simulations》2002,11(9):953-960
A mathematical model has been developed to describe the interfacial mass transfer of TEMPO in a nitroxide‐mediated miniemulsion polymerization (NMMP) system in the absence of chemical reactions. The model is used to examine how the diffusivity of TEMPO in the aqueous and organic droplet phases, the average droplet diameter and the nitroxide partition coefficient influences the time required for the nitroxide to reach phase equilibrium under non‐steady state conditions. Our model predicts that phase equilibrium is achieved quickly (< 1 × 10−4 s) in NMMP systems under typical polymerization conditions and even at high monomer conversions when there is significant resistance to molecular diffusion. The characteristic time for reversible radical deactivation by TEMPO was found to be more than ten times greater than the predicted equilibration times, indicating that phase equilibrium will be achieved before TEMPO has an opportunity to react with active polymer radicals. However, significantly longer equilibration times are predicted, when average droplet diameters are as large as those typically found in emulsion and suspension polymerization systems, indicating that the aqueous and organic phase concentrations of nitroxide may not always be at phase equilibrium during polymerization in these systems.
8.
John W. Ma Michael F. Cunningham Kim B. McAuley Barkev Keoshkerian Michael K. Georges 《Macromolecular theory and simulations》2003,12(1):72-85
Modeling studies were performed to investigate how persulfate‐initiated nitroxide‐mediated styrene miniemulsion polymerizations are influenced by changes to the polymerization recipe. By manipulating the initial concentrations of potassium persulfate and nitroxide, and the aqueous phase volume, trends in the predicted polymerization time, number average molecular weight, polydispersity and degree of polymer livingness were identified that indicate operating conditions for improved process performance. Specifically, our model predicts the existence of experimental conditions that simultaneously minimize polymer polydispersity and maximize the livingness of the polymer. The mechanisms responsible for the predicted trends were identified from the predicted molecular weight distributions of the living and dead polymer chains.
9.
Meizhen Yin Tilo Krause Martin Messerschmidt Wolf D. Habicher Brigitte Voit 《Journal of polymer science. Part A, Polymer chemistry》2005,43(9):1873-1882
The ability of different alkoxyamines ( I1 , I2 , I3 , I4 , and I5 ) to initiate controlled radical polymerization of styrene was evaluated. Among them, 2‐hydroxymethyl‐2‐[(2‐methyl‐1‐phenyl‐propyl)‐(1‐phenyl‐ethoxy)‐amino]‐propane‐1,3‐diol ( I5 ) gave the highest polymerization rate of styrene, and the best control over the molecular weight and the molecular weight distribution of polystyrene. Kinetic studies confirmed that with initiator I5 the polymerization of styrene proceeded in a controlled way. The controlled radical homopolymerization of multifunctional acryl‐ and methacryl derivatives using initiator I5 could not be realized as demonstrated by the high polydispersities (PD) obtained. However, it was possible to polymerize multifunctional acryl‐ and methacryl derivatives using a polystyrene macroinitiator ( Pst ) and, thus, novel amphiphilic block copolymers with a narrow molecular weight distribution were obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1873–1882, 2005 相似文献
10.
A mechanistic model is developed for high‐temperature (138 °C) styrene semibatch thermally and conventionally initiated FRP, as well as NMP with a two‐component initiating system (tert‐butyl peroxyacetate, 4‐hydroxy‐TEMPO). The model, using kinetic coefficients from literature, provides a good representation of the FRP experimental results. Implementation of a gel effect correlation to represent the change in the diffusion‐controlled termination rate coefficient with conversion improves the fit to the thermally initiated system, but is not required to represent the production of low molecular weight material ( Dalton) by conventionally initiated FRP or NMP. The low initiator efficiency found in NMP is well explained by a reaction network involving combination of free nitroxide with methyl radicals formed from initiator decomposition.
11.
Nitroxide‐Mediated Polymerization of 2‐Hydroxyethyl Methacrylate (HEMA) Controlled with Low Concentrations of Acrylonitrile and Styrene 下载免费PDF全文
Nitroxide‐mediated controlled radical polymerization of 2‐hydroxyethyl methacrylate (HEMA) is achieved using the copolymerization method with a small initial concentration of acrylonitrile (AN, 5–16 mol%)) or styrene (S, 5–10 mol%). The polymerization is mediated by N‐tert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethyl propyl) nitroxide (SG1)‐based BlocBuilder unimolecular alkoxyamine initiator modified with an N‐succinimidyl ester group (N‐hydroxysuccinimide‐BlocBuilder). As little as 5% molar feed of acrylonitrile results in a controlled polymerization, as evidenced by a linear increase in number average molecular weight M n with conversion and dispersities (? ) as low as 1.30 at 80% conversion in N ,N‐dimethylformamide (DMF) at 85 °C. With S as the controlling comonomer, higher initial S composition (≈10 mol%) is required to maintain the controlled copolymerization. Poly(HEMA‐ran‐AN)s with M n ranging from 5 to 20 kg mol?1 are efficiently chain extended using n‐butyl methacrylate/styrene mixtures at 90.0 °C in DMF, thereby showing a route to HEMA‐based amphiphilic block copolymers via nitroxide‐mediated polymerization.
12.
Thomas E. Enright Michael F. Cunningham Barkev Keoshkerian 《Macromolecular rapid communications》2005,26(4):221-225
Summary: Nitroxide‐mediated polymerization of styrene in a continuous tubular reactor has been demonstrated for the first time. The polymerization kinetics in the tubular reactor are similar to those in a batch reactor. The number average molecular weight increases linearly with conversion, and chain extension experiments were successful, indicating that the living nature of the polymerization is maintained in the tubular reactor.
13.
A simple approach for one‐pot, one‐step binary mixed homopolymer brush synthesis was devised by combining nitroxide‐mediated radical polymerization of styrene and living cationic ring‐opening polymerization of 2‐phenyl‐2‐oxazoline. Surface characterization techniques such as ATR‐FTIR, ellipsometry, XPS, and contact angle measurements were performed in this research. The mixed homopolymer brush exhibited reversible surface property changes when subjected to different solvents. 相似文献
14.
Farnesene (Far) is a bio‐based terpene monomer that is similar in structure to commercially used dienes like butadiene and isoprene. Nitroxide‐mediated polymerization (NMP) is adept for the polymerization of dienes, but not particularly effective at controlling the polymerization of methacrylates using commercial nitroxides. In this study, Far is statistically copolymerized with a functional methacrylate, glycidyl methacrylate (GMA), by NMP using N‐succinimidyl modified commercial BlocBuilder (NHS‐BB) initiator. Reactivity ratios are determined to be r Far = 0.54 ± 0.04 and r GMA = 0.24 ± 0.02. The ability of the poly(Far‐stat‐GMA) chains to reinitiate for chain extension with styrene showed a clear shift in molecular weight and monomodal distribution. Copolymerizations using a new alkoxyamine, Dispolreg 007 (D7), is explored as it is shown to homopolymerize methacrylates, but not yet reported for statistical copolymerizations. Bimodal molecular weight distributions are observed when an equimolar ratio of Far and GMA is copolymerized with D7 due to slow decomposition of the initiator, but chain ends are active as shown by successful chain extension with styrene. Both NHS‐BB and D7 initiators are used to synthesize poly[Far‐b‐(GMA‐stat‐Far)] and poly(Far‐b‐GMA) diblock copolymers. While the NHS‐BB initiated polymer chains have lower dispersity, D7 exhibits more linear polymerization kinetics and maintains more active chain ends. 相似文献
15.
16.
Sébastien‐Jun Mougnier Cyril Brochon Eric Cloutet Stéphanie Magnet Christophe Navarro Georges Hadziioannou 《Journal of polymer science. Part A, Polymer chemistry》2012,50(12):2463-2470
A well‐defined and monofunctional poly(3‐hexylthiophene)‐based (P3HT) macroinitiator has been obtained through a clean, simple, and an efficient multistep synthesis process. The macroinitiator is obtained via intermolecular radical 1,2‐addition onto an ω‐acrylate‐terminated P3HT macromonomer. In a second step, well‐defined rod‐coil block copolymers were obtained by nitroxide‐mediated radical polymerization (NMRP) using the so‐called Blocbuilder®. The polymerization was found to be controlled with various monomers such as styrene, isoprene, 4‐vinylpyridine, or methyl acrylate. This process constitutes a very promising way to obtain versatile and clean materials for organic electronics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
17.
Dr. Caroline Barrère Christophe Chendo Dr. Trang N. T. Phan Dr. Valérie Monnier Dr. Thomas Trimaille Prof. Stéphane Humbel Dr. Stéphane Viel Dr. Didier Gigmes Prof. Laurence Charles 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(25):7916-7924
A sample pretreatment was evaluated to enable the production of intact cationic species of synthetic polymers holding a labile end‐group using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. More specifically, polymers obtained by nitroxide‐mediated polymerization involving the MAMA‐SG1 alkoxyamine were stirred for a few hours in trifluoroacetic acid (TFA) to induce the substitution of a tert‐butyl group on the nitrogen of nitroxide end‐group by a hydrogen atom. Nuclear magnetic resonance, electrospray ionization tandem mass spectrometry, and theoretical calculations were combined to scrutinize this sample pretreatment from both mechanistic and energetic points of view. The substitution reaction was found to increase the dissociation energy of the fragile C? ON bond to a sufficient extent to prevent this bond to be spontaneously cleaved during MALDI analysis. This TFA treatment is shown to be very efficient regardless of the nature of the polymer, as evidenced by reliable MALDI mass spectrometric data obtained for poly(ethylene oxide), polystyrene and poly(butylacrylate). 相似文献
18.
The use of a bisaminooxy compound as initiator for nitroxide‐mediated radical polymerization (NMRP) of styrene or n‐butyl acrylate allows the synthesis of α,ω‐nitroxide‐capped polymers. At high temperatures and with the addition of acetic anhydride, it was found that these polymers could be applied as macroinitiators in the free‐radical polymerization of methyl methacrylate. This enables the synthesis of block copolymers with only minor contents of homopolymer.
19.
Chakravarthy S. Gudipati Maureen B. H. Tan Hazrat Hussain Ye Liu Chaobin He Thomas P. Davis 《Macromolecular rapid communications》2008,29(23):1902-1907
Poly(glycidyl methacrylate) (PGMA) was synthesized by the RAFT method in the presence of 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) chain transfer agent using different [GMA]/[CPDB] molar ratios. The living radical polymerization resulted in controlled molecular weights and narrow polydispersity indices (PDI) of ≈1.1. The polymerization of pentafluorostyrene (PFS) with PGMA as the macro‐RAFT agent yielded narrow PDIs of ≤1.2 at 60 °C and ≤1.5 at 80 °C. The epoxy groups of the PGMA block were hydrolyzed to obtain novel amphiphilic copolymer, poly(glyceryl methacrylate)‐block‐poly(pentafluorostyrene) [PGMA(OH)‐b‐PPFS]. The PGMA epoxy group hydrolysis was confirmed by 1H NMR and FTIR spectroscopy. DSC investigation revealed that the PGMA‐b‐PPFS polymer was amorphous while the PGMA(OH)‐b‐PPFS displayed a high degree of crystallinity.
20.
Boron subphthalocyanines (BsubPcs) are macrocyclic aromatic small molecules containing a chelated boron atom. BsubPcs have interesting optoelectronic and physical properties, justifying their use in various organic electronic devices such as organic solar cells and organic light‐emitting diodes. However, our group has only recently reported the first incorporation of a BsubPc moiety into a polymer using a two‐step post‐polymerization procedure. This communication outlines the use of acrylic acid as a method for obtaining carboxylic acid functional copolymers for the facile coupling to BsubPc post polymerization. In addition, the observations and the proposed mechanism of a side product unique to the copolymerization of acrylic acid and styrene due to autoinitiation are presented.