首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first experiment, subjects were asked to discriminate whether a sound was emanating from a moving or stationary source. The minimum audible movement angle (MAMA) thus defined was observed to increase as the source velocity increased. MAMA ranged from a low of 8.3 degrees with the slowest velocity employed (90 degrees/s) to a high of 21.2 degrees with the fastest velocity (360 degrees/s). In the second experiment, subjects were asked to localize where the moving source was, at signal on and offset. The results indicate that the apparent onset is displaced in the direction of motion and the amount of this displacement is directly related to source velocity. Less consistent results were observed with signal offset. The present results suggest that the binaural system is relatively insensitive to motion.  相似文献   

2.
Minimum audible movement angles (MAMAs) were measured in the horizontal plane for four normal-hearing adult subjects in a darkened anechoic chamber. On each trial, a single stimulus was presented, and the subject had to say whether it came from a stationary loudspeaker or from a loudspeaker that was moving at a constant angular velocity around him. Thresholds were established by adaptively varying stimulus duration. In experiment 1, MAMAs were measured as a function of center frequency (500-5000 Hz), velocity (10 degrees-180 degrees/s), and direction of motion (left versus right). There was no effect of direction of motion. MAMAs increased with velocity, from an average of 8.8 degrees of arc for a target moving at 10 degrees/s to an average of 20.2 degrees of arc for a target moving at 180 degrees/s. MAMAs were higher for a 3000-Hz tone than for tones of lower or higher frequencies, as has been previously reported [D. R. Perrott and J. Tucker, J. Acoust. Soc. Am. 83, 1522-1527 (1988)]. In experiment 2, minimum audible angles (MAAs) were measured with sequentially presented stationary tone pulses (500-5000 Hz), and were shown to exhibit the same dependence on signal frequency that the MAMAs showed (average MAA at 3000 Hz: 8.4 degrees; average MAA at the other frequencies: 3.4 degrees). In experiment 3, MAMAs and MAAs were measured as a function of stimulus bandwidth (centered at 3000 Hz) and listening azimuth (0 degrees vs 60 degrees). Average MAAs decreased monotonically as stimulus bandwidth increased from 0 Hz to wideband (from 8.4 degrees to 1.2 degrees at 0 degrees azimuth; from 11.3 degrees to 1.5 degrees at 60 degrees azimuth). As in experiment 1, MAMAs increased with stimulus velocity, from values comparable to the MAAs for the slowest-velocity (10 degrees/s) targets to 70 degrees of arc or more in the poorest condition (third-octave band of noise presented at a velocity of 180 degrees/s and an azimuth of 60 degrees). MAMAs obtained in the slower-velocity conditions depended in the same way on stimulus bandwidth and listening azimuth that MAAs depended on these variables. In no case was the MAMA ever smaller than the MAA. It is hypothesized that a minimum integration time is required to achieve optimal performance in a dynamic spatial resolution task. Average estimates of this minimum time based on the current data vary from 336 ms (for targets presented at midline) to 1116 ms (for narrow-band targets presented at 60 degrees azimuth).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Overshoot, the elevation in the threshold for a brief signal that comes on close to masker onset, was measured with signal frequency certain (same frequency on every trial) or uncertain (randomized over trials). In broadband noise, thresholds were higher 2 ms after masker onset than 200 ms later, by 9 dB with frequency certainty, by 6-7 dB with uncertainty. In narrowband noise centered on the signal frequency, thresholds at 2 ms were not elevated with certainty, but were elevated 4-5 dB with uncertainty. Thus, frequency uncertainty leads to less overshoot in broadband noise, to more overshoot in narrowband noise. Reduced overshoot in broadband noise may come about because the masker, given its many frequencies, disrupts focusing at onset as much under certainty as uncertainty. Once the initial disruption dissipates, threshold is lower with certainty so overshoot is greater. In contrast, a narrowband noise with frequencies only near the signal does not disrupt focusing when the signal frequency is known beforehand, so overshoot is absent. When frequency is uncertain, the narrowband noise serves to focus attention on the signal frequency; as this requires time, detection near noise onset is poorer than later on, so overshoot is present.  相似文献   

4.
Free-field release from masking   总被引:4,自引:0,他引:4  
Free-field release from masking was studied as a function of the spatial separation of a signal and masker in a two-interval, forced-choice (2IFC) adaptive paradigm. The signal was a 250-ms train of clicks (100/s) generated by filtering 50-microseconds pulses with a TDH-49 speaker (0.9 to 9.0 kHz). The masker was continuous broadband (0.7 to 11 kHz) white noise presented at a level of 44 dBA measured at the position of the subject's head. In experiment I, masked and absolute thresholds were measured for 36 signal source locations (10 degree increments) along the horizontal plane as a function of seven masking source locations (30 degree increments). In experiment II, both absolute and masked thresholds were measured for seven signal locations along three vertical planes located at azimuthal rotations of 0 degrees (median vertical plane), 45 degrees, and 90 degrees. In experiment III, monaural absolute and masked thresholds were measured for various signal-masker configurations. Masking-level differences (MLDs) were computed relative to the condition where the signal and mask were in front of the subjects after using absolute thresholds to account for differences in the signal's sound-pressure level (SPL) due to direction. Maximum MLDs were 15 dB along the horizontal plane, 8 dB along the vertical, and 9 dB under monaural conditions.  相似文献   

5.
Modulation and gap detection for broadband and filtered noise signals   总被引:2,自引:0,他引:2  
Modulation detection thresholds (as a function of sinusoidal amplitude modulation frequency) and temporal gap detection thresholds were measured for three low-pass-filtered noise signals (fc = 1000, 2000, and 4000 Hz), a high-pass-filtered noise signal (fc = 4000 Hz), and a broadband signal. The two latter noise signals were effectively low-pass filtered (fc = 6500 Hz) by the earphone. Each of the filtered signals was presented with a complementary filtered noise masker. Modulation and gap detection thresholds were lowest for the broadband and high-pass signals. Thresholds were significantly higher for the low-pass signals than for the broadband and high-pass signals. For these tasks and conditions, the high-frequency content of the noise signal was more important than was the signal bandwidth. Sensitivity (s) and time constant (tau) indices were derived from functions fitted to the modulation detection data. These indices were compared with gap detection thresholds for corresponding signals. The gap detection thresholds were correlated inversely (rho = -1.0, p less than 0.05) with s (i.e., smaller gap detection thresholds were correlated with greater sensitivity to modulation), but were not correlated significantly with tau, which was relatively invariant across signal conditions.  相似文献   

6.
Minimum audible movement angles as a function of sound source trajectory   总被引:1,自引:0,他引:1  
Auditory resolution of moving sound sources was determined in a simulated motion paradigm for sources traveling along horizontal, vertical, or oblique orientations in the subjects's frontal plane. With motion restricted to the horizontal orientation, minimum audible movement angles (MAMA) ranged from about 1.7 degrees at the lowest velocity (1.8 degrees/s) to roughly 10 degrees at the highest velocity (320 degrees/s). With the sound moving along an oblique orientation (rotated 45 degrees relative to the horizontal) MAMAs generally matched those of the horizontal condition. When motion was restricted to the vertical, MAMAs were substantially larger at all velocities (often exceeding 8 degrees). Subsequent tests indicated that MAMAs are a U-shaped function of velocity, with optimum resolution obtained at about 2 degrees/s for the horizontal (and oblique) and 7-11 degrees/s for the vertical orientation. Additional tests conducted at a fixed velocity of 1.8 degrees/s along oblique orientations of 80 degrees and 87 degrees indicated that even a small deviation from the vertical had a significant impact on MAMAs. A displacement of 10 degrees from the vertical orientation (a slope of 80 degrees) was sufficient to reduce thresholds (obtained at a velocity of 1.8 degrees/s) from about 11 degrees to approximately 2 degrees (a fivefold increase in acuity). These results are in good agreement with our previous study of minimum audible angles long oblique planes [Perrott and Saberi, J. Acoust. Soc. Am. 87, 1728-1731 (1990)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Two experiments were conducted to examine the ability of human listeners to localize the "lag" or "echo" source in a precedence effect paradigm. A 5-ms noise burst was presented from a source located between 554-279 cm from the subject. This "lead" source was always located at 0 degrees azimuth. At the same time, one of two sources located at a distance of 610 cm from the subject was also activated with the same 5-ms noise burst. The subject's task was to identify which lag source had been active. Across sessions, the angular distance between the lag sources was varied, so as to allow a determination of the minimum audible angle (MAA) that could be resolved. Tests were run in a room designed to minimize reflections and in a hallway that was acoustically quite complex. No systematic differences in MAA thresholds were observed as a function of the environment employed. MAA thresholds obtained without the signal from the lead speaker were less than 1 degree for four of the five subjects tested. The precedence effect, as measured by the change in the MAA threshold, appears to have only a modest influence on localization performance. Under conditions in which the lead source was concurrently active, the thresholds were generally elevated by only 2 degrees-4 degrees. A reduction of this magnitude in the ability to resolve the position of the lag source does not seem to be sufficient, in itself, to account for the excellent localization performance frequently observed in reflective environments.  相似文献   

8.
Either an interaural phase shift or level difference was introduced to a narrow section of broadband noise in order to measure the acuity of the binaural system to segregate a narrowband from a broadband stimulus. Listeners were asked to indicate whether this dichotic noise or a totally diotic noise was presented in a single-interval procedure. Thresholds for interaural phase and level differences were estimated from four point psychometric functions. These thresholds were determined for three bandwidths of interaurally altered noise (2, 10, and 100 Hz) centered at four center frequencies (200, 500, 1000, and 1600 Hz). Thresholds were lowest when the interaurally altered band of noise was centered at 500 Hz, and thresholds increased as the bandwidth of the interaurally altered noise decreased. Performance did not exceed 75% correct when either an interaural phase shift (180 degrees) or interaural level difference (50 dB) was introduced to a 100 Hz band of noise centered at frequencies higher than 1600 Hz. In a second set of conditions, performance was measured when both an interaural phase shift and level difference were presented in a 10-Hz-wide band of noise centered at 500 Hz. A version of the Durlach E-C model was able to account for a great deal of the data. The results are discussed in terms of the Huggins dichotic pitch.  相似文献   

9.
Temporal gaps in noise and sinusoids   总被引:3,自引:0,他引:3  
The ability of human observers to detect partially filled or completely silent intervals (gaps) was measured using a variety of different waveforms. The slopes of the psychometric functions for gap detection using broadband noise are dependent upon the amount of noise remaining during the gap. For completely silent intervals, the psychometric function covers a range of only 2 ms, but the psychometric functions for partially filled intervals are less steep. The detection of gaps in narrow-band noise (surrounded by complementary band-reject maskers) is strongly influenced by the signal-to-noise ratio. The signal bandwidth and center frequency also influence detectability. Gap detection improved as signal bandwidth increased, and detection improved when signal bands containing gaps were centered at higher frequencies. Detection of gaps in single components of a 21-component, equal-amplitude complex also showed lower thresholds as the frequency of the component containing the gap increased. Increasing the number of components in the complex that contained the gap improved the detectability of the gap, more so when the gaps were all presented at the same time (synchronous condition). Uncertainty about the temporal position of the gap within the observation interval made the gap more difficult to detect. This temporal uncertainty effect occurred for gaps in broadband noise, in narrow-band noise, and in sinusoidal waveforms.  相似文献   

10.
The spectral resolution of the binaural system was measured using a tone-detection task in a binaural analog of the notched-noise technique. Three listeners performed 2-interval, 2-alternative, forced choice tasks with a 500-ms out-of-phase signal within 500 ms of broadband masking noise consisting of an "outer" band of either interaurally uncorrelated or anticorrelated noise, and an "inner" band of interaurally correlated noise. Three signal frequencies were tested (250, 500, and 750 Hz), and the asymmetry of the filter was measured by keeping the signal at a constant frequency and moving the correlated noise band relative to the signal. Thresholds were taken for bandwidths of correlated noise ranging from 0 to 400 Hz. The equivalent rectangular bandwidth of the binaural filter was found to increase with signal frequency, and estimates tended to be larger than monaural bandwidths measured for the same listeners using equivalent techniques.  相似文献   

11.
Thresholds for the detection of the direction of travel of a moving sound source were determined in a single-interval, forced-choice paradigm. Both the rate at which the sound source is displaced (8 degrees-128 degrees/s) and the frequency of the signal to be localized (500-3700 Hz) affect dynamic spatial resolution. There is an inverse relationship between spatial resolution and the rate of travel, a finding that replicates an earlier observation on performance with sources displaced at high velocities [Perrott and Musicant, J. Acoust. Soc. Am. 62, 1463-1466 (1977)]. However, the magnitude of this effect depends on the actual velocities employed. Relatively small changes in spatial resolution are apparent for velocities below approximately 32 degrees/s. The significant frequency effect can be summarized as follows: Dynamic spatial resolution is better for signals below 1000 Hz than for signals above this value (within the range tested). Particularly poor resolution is evident for signals between 1300-2000 Hz. The present results indicate that signal frequency affects dynamic spatial resolution in a fashion similar to that which has been observed in the more common "static" localization test situation. There is no indication of an interaction between these two variables. These results provide additional support for the hypothesis that both static and dynamic spatial discrimination functions are dependent upon the same underlying mechanisms. The effects of velocity upon the spatial resolution problem, a unique aspect of the dynamic paradigm, can probably be explained without the necessity of additional hypothetical mechanisms in the auditory system (e.g., a specialized motion detector).  相似文献   

12.
Thresholds of a 5-ms, 1-kHz signal were determined in the presence of a frozen-noise masker. The noise had a flat power spectrum between 20 Hz and 5 kHz and was presented with a duration of 300 ms. The following interaural conditions were tested with four listeners: Noise and signal monaural at the same ear (monaural condition, NmSm), noise and signal identical at both ears (diotic condition, NoSo), noise identical at both ears and signal monaural (dichotic condition, NoSm) and uncorrelated noise at the two ears and signal monaural (NuSm). The signal was presented at a fixed temporal position with respect to the frozen noise in all measurements and thresholds were determined for different starting phases of the carrier frequency of the signal. Variation of the carrier phase strongly influenced the detection in the diotic condition and the masked thresholds varied by more than 10 dB. The pattern of thresholds for the monaural condition was less variable and the thresholds were generally higher than for the diotic condition. The monaural-diotic difference for specific starting phases amounted to as much as 8 dB. Comparison measurements using running noise maskers revealed no such difference. This relation between monaural and diotic thresholds was further investigated with eight additional subjects. Again, monaural and diotic thresholds in running noise were identical, while in frozen noise, diotic thresholds were consistently lower than monaural thresholds, even when the ear with the lower NmSm threshold was compared. For the starting phase showing the largest monaural-diotic difference, the thresholds for NoSm lay between the monaural and the diotic values. At other starting phases, the NoSm threshold was clearly lower than both the NmSm and the NoSo threshold. One possible explanation of the observed monaural-diotic differences relates to contralateral efferent interaction between the right and the left hearing pathway. A prediction based on this explanation was verified in a final experiment, where frozen-noise performance for NmSm was improved by simultaneously presenting an uncorrelated running noise to the opposite ear.  相似文献   

13.
This paper examines some of the factors that can affect the magnitude of comodulation masking release (CMR). In experiment I, psychometric functions were measured for the detection of a 1-kHz sinusoidal signal in a "multiplied" narrow-band noise centered at 1 kHz (reference condition) and the same noise with two comodulated flanking bands added. The functions were slightly steeper for the comodulated than for the reference masker. Thus CMRs measured at a high percent correct point were slightly (0.4 dB) larger than CMRs measured at a low percent correct point. Large individual differences were found for the reference masker but not for the comodulated masker. Experiment II compared CMRs obtained with narrow-band Gaussian noise and multiplied noise, using a single flanking band. For a flanking band remote from the signal frequency, the CMRs were smaller and more variable for the multiplied noise than for the Gaussian noise. This variability arose mainly from individual differences in the reference condition. Experiment III compared growth-of-masking functions for a signal centered in Gaussian noise and multiplied noise. Thresholds were lower for the multiplied than for the Gaussian noise, and the differences were greatest at high noise levels. The results are consistent with the idea that, for multiplied noise, some subjects can detect a change in the distribution of the envelope of the stimulus, when the signal is added to the masker. Such subjects have low thresholds in the reference condition, and give small CMRs. Other subjects are relatively insensitive to this cue. They have higher thresholds in the reference condition, and give larger CMRs. For Gaussian noise, thresholds for the reference condition are relatively stable across subjects and CMRs tend to be substantial, even for flanking-band frequencies remote from the signal frequency.  相似文献   

14.
In most masking experiments, target signals and sound intended to mask are located in the same position. Spatial release from masking (SRM) occurs when signals and maskers are spatially separated, resulting in detection improvement relative to when they are spatially co-located. In this study, SRM was investigated in a harbor seal, who naturally lacks pinnae, and California sea lion, who possesses reduced pinnae. Subjects had to detect aerial tones at 1, 8, and 16 kHz in the presence of octave bands of white noise centered at the tone frequency. While the masker occurred in front of the subject (0 degree), the tone occurred at 0, 45, or 90 degrees in the horizontal plane. Unmasked thresholds were also measured at these angles to determine sensitivity differences based on source azimuth. Compared to when signal and masker where co-located, masked thresholds were lower by as much as 19 and 12 dB in the harbor seal and sea lion, respectively, when signal and masker were separated. Masked threshold differences of the harbor seal were larger than those previously measured under water. Performance was consistent with some measurements collected on terrestrial animals but differences between subjects at the highest frequency likely reflect variations in pinna anatomy.  相似文献   

15.
The objectives of this study were to measure suppression with bandlimited noise extended below and above the signal, at lower and higher signal frequencies, between younger and older subjects, and between subjects with normal hearing and cochlear hearing loss. Psychophysical suppression was assessed by measuring forward-masked thresholds at 0.8 and 2.0 kHz in bandlimited maskers as a function of masker bandwidth. Bandpass-masker bandwidth was increased by introducing noise components below and above the signal frequency while keeping the noise centered on the signal frequency, and also by adding noise below the signal only, and above the signal only. Subjects were younger and older adults with normal hearing and older adults with cochlear hearing loss. For all subjects, suppression was larger when noise was added below the signal than when noise was added above the signal, consistent with some physiological evidence of stronger suppression below a fiber's characteristic frequency than above. For subjects with normal hearing, suppression was greater at higher than at lower frequencies. For older subjects with hearing loss, suppression was reduced to a greater extent above the signal than below and where thresholds were elevated. Suppression for older subjects with normal hearing was poorer than would be predicted from their absolute thresholds, suggesting that age may have contributed to reduced suppression or that suppression was sensitive to changes in cochlear function that did not result in significant threshold elevation.  相似文献   

16.
Several investigations suggest that sensitivity to changes in interaural disparities within select spectral regions may be degraded by the presence of energy at other, even remote, spectral regions. This study assessed whether similar degradations would be observed in an MLD paradigm. Detection thresholds were measured for NoSo and NoS pi. The signal, an 800-Hz tone (100-ms), was presented in continuous, broadband noise. Thresholds were also measured in the presence of a 400-Hz tone (the interferer) presented with an interaural phase disparity of 180 degrees and gated simultaneously with the signal or presented continuously. NoS pi thresholds increased by about 7 dB with the gated interferer at 80 dB SPL. Smaller increases were observed with lower levels of the interferer. Presenting the interferer continuously reduced substantially its effect. NoSo thresholds were affected only slightly by the interferer. Reversing the roles of the signal and interferer (400-Hz signal, 800-Hz interferer) led to smaller, but reliable degradations in performance. Diotic interferers had, in general, smaller effects on performance. The possible relation between the mechanisms that produce interference and those that foster an ability to segregate sources of sound is discussed.  相似文献   

17.
Two experiments were performed that examined the relation between frequency selectivity for diotic and dichotic stimuli. Subjects were eight normal-hearing listeners. In each experiment, a 500-Hz pure tone of 400-ms duration was presented in continuous noise. In the diotic listening conditions, a signal and noise were presented binaurally with no interaural differences (So and No, respectively). In the dichotic listening conditions, the signal or noise at one ear was 180 degrees out-of-phase relative to the respective stimulus at the other ear (S pi and N pi, respectively). The first experiment examined frequency selectivity using the bandlimiting measure. Here, signal thresholds were determined as a function of masker bandwidth (50, 100, 250, 500, and 1000 Hz) for SoNo, S pi No, and SoN pi listening conditions. The second experiment used a modified bandlimiting measure. Here, signal thresholds (So and S pi) were determined with a relatively narrow No band of masker energy (50 Hz wide) centered about the signal. Then, a second No narrow-band masker (30 Hz wide) was added at another frequency region, and signal thresholds were reestablished. The results of the two experiments indicated that listeners process a wider band of frequencies when resolving dichotic stimuli than when resolving diotic or monotic stimuli. The results also indicated that the bandlimiting measure may underestimate the spectral band processed upon dichotic stimulation. Results are interpreted in terms of an across-ear and across-frequency processing of waveform amplitude envelope.  相似文献   

18.
Masked thresholds for a 1000-Hz sinusoidal signal were measured as a function of masker level in both forward and simultaneous masking for two types of maskers: a 1000-Hz sinusoid and a narrowband noise, 60-Hz wide, centered at 1000 Hz. In forward masking, the noise masker produced much steeper growth-of-masking functions than the sinusoid. Presenting a contralateral broadband noise "cue" with the forward masker dramatically reduced the slope of masking for the noise masker but did not influence results for the sinusoidal masker. The noise remained the more effective masker. The amount of masking produced by combinations of equally effective narrowband-noise and sinusoidal maskers was compared to that produced by each masker individually with and without the contralateral cue. No additional masking beyond that predicted by energy summation was measured for forward masking. Additional masking beyond energy-sum predictions was measured for analogous conditions in simultaneous masking. Comparisons of results obtained with and without the contralateral cue suggest that signal thresholds in the presence of narrowband-noise forward maskers can reflect nonperipheral auditory processes.  相似文献   

19.
Speech can remain intelligible for listeners with normal hearing when processed by narrow bandpass filters that transmit only a small fraction of the audible spectrum. Two experiments investigated the basis for the high intelligibility of narrowband speech. Experiment 1 confirmed reports that everyday English sentences can be recognized accurately (82%-98% words correct) when filtered at center frequencies of 1500, 2100, and 3000 Hz. However, narrowband low predictability (LP) sentences were less accurately recognized than high predictability (HP) sentences (20% lower scores), and excised narrowband words were even less intelligible than LP sentences (a further 23% drop). While experiment 1 revealed similar levels of performance for narrowband and broadband sentences at conversational speech levels, experiment 2 showed that speech reception thresholds were substantially (>30 dB) poorer for narrowband sentences. One explanation for this increased disparity between narrowband and broadband speech at threshold (compared to conversational speech levels) is that spectral components in the sloping transition bands of the filters provide important cues for the recognition of narrowband speech, but these components become inaudible as the signal level is reduced. Experiment 2 also showed that performance was degraded by the introduction of a speech masker (a single competing talker). The elevation in threshold was similar for narrowband and broadband speech (11 dB, on average), but because the narrowband sentences required considerably higher sound levels to reach their thresholds in quiet compared to broadband sentences, their target-to-masker ratios were very different (+23 dB for narrowband sentences and -12 dB for broadband sentences). As in experiment 1, performance was better for HP than LP sentences. The LP-HP difference was larger for narrowband than broadband sentences, suggesting that context provides greater benefits when speech is distorted by narrow bandpass filtering.  相似文献   

20.
The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0 degrees azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were "anchored" on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号