首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The incorporation of synthetic molecules as corner units in DNA structures has been of interest over the last two decades. In this work, we present a facile method for generating branched small molecule‐DNA hybrids with controllable valency, different sequences, and directionalities (5′–3′) using a “printing” process from a simple 3‐way junction structure. We also show that the DNA‐imprinted small molecule can be extended asymmetrically using polymerase chain reaction (PCR) and can be replicated chemically. This strategy provides opportunities to achieve new structural motifs in DNA nanotechnology and introduce new functionalities to DNA nanostructures.  相似文献   

2.
The incorporation of synthetic molecules as corner units in DNA structures has been of interest over the last two decades. In this work, we present a facile method for generating branched small molecule‐DNA hybrids with controllable valency, different sequences, and directionalities (5′–3′) using a “printing” process from a simple 3‐way junction structure. We also show that the DNA‐imprinted small molecule can be extended asymmetrically using polymerase chain reaction (PCR) and can be replicated chemically. This strategy provides opportunities to achieve new structural motifs in DNA nanotechnology and introduce new functionalities to DNA nanostructures.  相似文献   

3.
DNA is a highly programmable material that can be configured into unique high‐order structures, such as DNA branched junctions containing multiple helical arms converging at a center. Herein we show that DNA programmability can deliver in situ growth of a 3‐way junction‐based DNA structure (denoted Y‐shaped DNA) with the use of three hairpin‐shaped DNA molecules as precursors, a specific microRNA target as a recyclable trigger, and a DNA polymerase as a driver. We demonstrate that the Y‐shaped configuration comes with the benefit of restricted freedom of movement in confined cellular environment, which makes the approach ideally suited for in situ imaging of small RNA targets, such as microRNAs. Comparative analysis illustrates that the proposed imaging technique is superior to both the classic fluorescence in situ hybridization (FISH) method and an analogous amplified imaging method via programmed growth of a double‐stranded DNA (rather than Y‐shaped DNA) product.  相似文献   

4.
5.
The stable structures of the fused cubic water cluster (H2O)12 are examined using graph theoretical techniques and ab initio calculations. The calculations are obtained by scanning the symmetry of digraph structures of hydrogen-bond network spanning 12 oxygen atom vertexes. Using the Pólya theorem the cycle index expressions for 12 vertexes and 20 edges of a cuboid in point-group symmetry D(4h) are developed. A total of 91 energy-allowed fused cubic structures are obtained, which are classified by 8 point-group symmetries: 1 D(2h), 2 S4, 5 C4, 1 D2, 11 C2, 10 C(i), 1 C(s), and 60 C1. An energy level diagram of the structures reveals 14 bands that correspond to 14 unique two-colored graphs derived from the distributions of four free hydrogens of the cluster.  相似文献   

6.
Walba等以其卓越的工作,合成了三-THYME(C_(42)H_(72)O_(18))和四-THYME(C_(56)H_(96)O_(24))圆筒及其Mbius扭曲环带分子,被誉为拓扑学进入有机化学领域的奇迹,成为迄今为止拓扑立体化学研究的重要内容,但从拓扑学的观点探索分子图拓扑结构特性尚缺乏深入研究,本文作者考虑到一般性,曾将扭曲数T为偶数(0,2,4)的定义为Hckel型,扭曲数  相似文献   

7.
Branched DNA molecules can be assembled into objects and networks directed by sticky-ended cohesion. The connectivity of these species is limited by the number of arms flanking the branch point. To date, the only branched junctions constructed contain six or fewer arms. We report the construction of DNA branched junctions that contain either 8 or 12 double-helical arms surrounding a branch point. The design of the 8-arm junction exploits the limits of a previous approach to thwart branch migration, but the design of the 12-arm junction uses a new to principle achieve this end. The 8-arm junction is stable with 16 nucleotide pairs per arm, but the 12-arm junction has been stabilized by 24 nucleotide pairs per arm. Ferguson analysis of these junctions in combination with 3-, 4-, 5-, and 6-arm junctions indicates a linear increase in friction constant as the number of arms increases; the 4-arm junction migrates anomalously at 4 degrees C, suggesting stacking of its domains. All strands in both the 8-arm and 12-arm junctions show similar responses to hydroxyl radical autofootprinting analysis, indicating that they lack any dominant stacking structures. The stability of the 12-arm junction demonstrates that the number of arms in a junction is not limited to the case of having adjacent identical base pairs flanking the junction. The ability to construct 8-arm and 12-arm junctions increases the number of objects, graphs, and networks that can be built from branched DNA components. In principle, the stick structure corresponding to cubic close-packing is now a possible target for assembly by DNA nanotechnology.  相似文献   

8.
Two-dimensional pseudohexagonal trigonal arrays have been constructed by self-assembly from DNA. The motif used is a bulged-junction DNA triangle whose edges and extensions are DNA double crossover (DX) molecules, rather than conventional DNA double helices. Experiments were performed to establish whether the success of this system results from the added stiffness of DX molecules or the presence of two sticky ends at the terminus of each edge. Removal of one sticky end precludes lattice formation, suggesting that it is the double sticky end that is the primary factor enabling lattice formation.  相似文献   

9.
Gel electrophoretic analysis of DNA branched junctions   总被引:5,自引:0,他引:5  
Gel electrophoresis has provided much of the detailed information we have about the properties of DNA junctions, stable branched molecules formed from oligonucleotide or polynucleotide strands. Here we review these applications, and present the results of an electrophoretic investigation of conformationally restricted junctions formed by covalently connecting two different pairs of strands in a junction with four arms. Native gel electrophoresis is employed to establish the formation and stoichiometry of the multistrand complexes. Ferguson analysis of native gel mobility shows that junctions have retardation coefficients that are distinct from those of linear DNA duplexes. Denaturing gel electrophoresis is the primary tool for characterizing junctions that have been covalently linked together to form both linear and macrocyclic oligomers of junctions (oligojunctions). Radioactively labelled strands enable one to monitor the progress of the ligation reaction: both linear and closed cyclic molecules result, and these can be distinguished by applying Ferguson analysis to denaturing gels. Combinations of exonuclease III, restriction enzymes and sequencing reactions have been applied to oligojunction molecules, and the results are all analyzed on denaturing gels. Junctions containing intramolecular "tethers" that restrict the conformation freedom of the complex comprise a new system for analyzing the conformations of branched molecules. In these tethered junctions, the ability of arms to move relative to each other is restricted substantially by covalently connecting pairs of arms in the original complex with short, flexible loops. The two tethers used here constrain the helical domains of the structure to be roughly parallel or anti-parallel. In this article, we use Ferguson analysis to compare two tethered junctions with an untethered junction. At high gel concentrations, the mobility of the untethered complex is found to be closer to that of the molecule tethered anti-parallel than to the one tethered parallel. Curvature in the Ferguson plots for all three of these junctions is detected over a range of compositions. At low gel concentrations, differences in electrophoretic mobility persist, suggesting that the untethered junction differs in charge as well as conformational freedom from the tethered analogs. We expect that studies of this kind will be able to define the conformational repertoire of junctions of different kinds, and to explore the effects of electrophoresis on these states.  相似文献   

10.
This paper reports a method for the identification of those molecules in a database of rigid 3D structures with molecular electrostatic potential (MEP) grids that are most similar to that of a user-defined target molecule. The most important features of an MEP grid are encoded in field-graphs, and a target molecule is matched against a database molecule by a comparison of the corresponding field-graphs. The matching is effected using a maximal common subgraph isomorphism algorithm, which provides an alignment of the target molecule's field- graph with those of each of the database molecules in turn. These alignments are used in the second stage of the search algorithm to calculate the intermolecular MEP similarities. Several different ways of generating field-graphs are evaluated, in terms of the effectiveness of the resulting similarity measures and of the associated computational costs. The most appropriate procedure has been implemented in an operational system that searches a corporate database, containing ca. 173,000 3D structures.  相似文献   

11.
Nature has evolved replicable biological molecules, such as DNA, as genetic information carriers. The replication process is tightly controlled by complicated cellular machinery. It is interesting to ask if artificial DNA nano-objects with a complex secondary structure can be replicated in the same way as simple DNA double helices. Here we demonstrate that paranemic crossover DNA, a structurally complicated multi-crossover DNA molecule, can be replicated successfully using Rolling Circle Amplification (RCA). The amplification efficiency is moderate with high fidelity, confirmed by native PAGE, thermal transition study, and Ferguson analysis. The structural details of the DNA structure after the full replication circle are verified by hydroxyl radical autofootprinting. We conclude that RCA can serve as a reliable method to replicate complex DNA structures. We also discuss the possibility of using viruses and bacteria to clone artificial DNA nano-objects. The findings that single stranded paranemic crossover DNA molecules can be replicated by DNA polymerase will not only be useful in nanotechnology but also may have implications for the possible existence of such complicated DNA structures in nature.  相似文献   

12.
13.
After a short historic review, we briefly describe a new algorithm for constructive enumeration of polyhex and fusene hydrocarbons. In this process our algorithm also enumerates isomers and symmetry groups of molecules (which implies enumeration of enantiomers). Contrary to previous methods often based on the boundary code or its variants (which records orientation of edges along the boundary) or on the DAST code, which uses a rigid dualist graph (whose vertices are associated with faces and edges with adjacency between them), the proposed algorithm proceeds in two phases. First inner dual graphs are enumerated; then molecules obtained from each of them by specifying angles between adjacent edges are obtained. Favorable computational results are reported. The new algorithm is so fast that output of the structures is by far the most time-consuming part of the process. It thus contributes to enumeration in chemistry, a topic studied for over a century, and is useful in library making, QSAR/QSPR, and synthesis studies.  相似文献   

14.
The symmetry of molecules and transition states of elementary reactions is an essential property with important implications for computational chemistry. The automated identification of symmetry by computers is a very useful tool for many applications, but often relies on the availability of three‐dimensional coordinates of the atoms in the molecule and hence becomes less useful when these coordinates are a priori unavailable. This article presents a new algorithm that identifies symmetry of molecules and transition states based on an augmented graph representation of the corresponding structures, in which both topology and the presence of stereocenters are accounted for. The automorphism group order of the graph associated with the molecule or transition state is used as a starting point. A novel concept of label‐stereoisomers, that is, stereoisomers that arise after labeling homomorph substituents in the original molecule so that they become distinguishable, is introduced and used to obtain the symmetry number. The algorithm is characterized by its generic nature and avoids the use of heuristic rules that would limit the applicability. The calculated symmetry numbers are in agreement with expected values for a large and diverse set of structures, ranging from asymmetric, small molecules such as fluorochlorobromomethane to highly symmetric structures found in drug discovery assays. The new algorithm opens up new possibilities for the fast screening of the degree of symmetry of large sets of molecules. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The greatest single success of modern computational quantum chemistry has been its ability to correctly predict the geometrical structures of molecules. The FOOF molecule stands in contrast to the overwhelming mass of comparisons between theory and experiment. This research shows that configuration interaction (CI) methods including all single and double excitations (SD) fail to predict the correct FOOF structure, even when high-quality basis sets are employed.  相似文献   

16.
Heuer DM  Saha S  Kusumo AT  Archer LA 《Electrophoresis》2004,25(12):1772-1783
The electrophoretic mobility of three-arm asymmetric star DNA molecules, produced by incorporating a short DNA branch at the midpoint of rigid-rod linear DNA fragments, is investigated in polyacrylamide gels. We determine how long the added branch must be to separate asymmetric star DNA from linear DNA with the same total molecular weight. This work focuses on two different geometric progressions of small DNA molecules. First, branches of increasing length were introduced at the center of a linear DNA fragment of constant length. At a given gel concentration, we find that relatively small branch lengths are enough to cause a detectable reduction in electrophoretic mobility. The second geometric progression starts with a small branch on a linear DNA fragment. As the length of this branch is increased, the DNA backbone length is decreased such that the total molar mass of the molecule remains constant. The branch length was then increased until the asymmetric branched molecule becomes a symmetric three-arm star polymer, allowing the effect of molecular topology on mobility to be studied independent of size effects. DNA molecules with very short branches have a mobility smaller than linear DNA of identical molar mass. The reason for this change in mobility when branching is introduced is not known, however, we explore two possible explanations in this article. (i) The branched DNA could have a greater interaction with the gel than linear DNA, causing it to move slower; (ii) the linear DNA could have modes of motion or access to pores that are unavailable to the branched DNA.  相似文献   

17.
Single molecule studies allow for the direct observation of polymer dynamics in dilute and concentrated solutions, thereby revealing polymer chain conformations and molecular sub-populations that may be obscured in ensemble-level measurements. Over the past two decades, researchers have used DNA as a model system to study polymer dynamics at the molecular level. The vast majority of studies have focused on linear DNA molecules; however, researchers have recently begun to study polymers with complex topologies and architectures at the single molecule level. Here, we explore recent work in single polymer dynamics focused on topologically complex DNA, including knots, ring polymers, and branched polymers. Experimental, computational, and theoretical advances have enabled in-depth studies of topologically complex DNA, with recent efforts focused on complex molecular conformations, intermolecular interactions, and topology-dependent dynamics. In this article, we highlight recent work aimed at understanding the interplay between molecular-scale behavior and the emergent properties of polymeric materials.  相似文献   

18.
The great size of chemical databases and the high computational cost required in the atom-atom comparison of molecular structures for the calculation of the similarity between two chemical compounds necessitate the proposal of new clustering models with the aim of reducing the time of recovery of a set of molecules from a database that satisfies a range of similarities with regard to a given molecule pattern. In this paper we make use of the information corresponding to the cycles existing in the structure of molecules as an approach for the classification of chemical databases. The clustering method here proposed is based on the representation of the topological structure of molecules stored in chemical databases through its corresponding cycle graph. This method presents a more appropriate behavior for others described in the bibliography in which the information corresponding to the cyclicity of the molecules is also used.  相似文献   

19.
The structure of liquid formic acid has been investigated by Car-Parrinello and classical molecular dynamics simulations, focusing on the characterization of the H-bond network and on the mutual arrangement of pairs of bonded molecules. In agreement with previous computational studies, two levels of H-bonded structures have been found. Small clusters, characterized by O-H...O bonds, are held together by weak C-H...O bonds to form large branched structures. From the ab initio simulation we infer the importance of cyclic H-bond dimer configurations, typical of the gas phase. Most of these dimer structures are however found to be embedded into H-bonded chains. When only O-H...O bonds are taken into account, linear H-bond chains are detected as basic structures of the liquid. More branched structures occur when C-H...O bonds are also considered. Regarding the arrangement of molecular pairs, we observed that O-H...O bonds favor the occurrence of configurations with parallel molecular planes, whereas no preferential orientation is observed for molecules forming C-H...O bonds.  相似文献   

20.
The electrophoretic mobility of three-arm star DNA structures with varying degrees of branch length asymmetry has been investigated in polyacrylamide (PAA) hydrogels. We report the effect of single-base mismatches, adjacent to the branch point, on the mobility of branched DNA with three different arm lengths. Branched DNA structures were formed using wild-type and mutated fragments of the p53 tumor suppressor gene, which is believed to play an important role in cancer development. Branching was directed at the site of several previously characterized mutations in exon 7 of p53. At a given gel concentration, the mobility of branched DNA with fully complementary base pairing is found to increase as the degree of branch length asymmetry is increased. Ferguson analysis of the gel electrophoresis data leads to a retardation coefficient that is strongly dependent on topology. This finding can be explained in terms of a minimum molecular cross-section for each molecule. Specifically, we show that structures with the smallest molecular cross-section can access more pores in the gel, which leads to higher mobility. Our results can also be understood by considering the rotational diffusivity of branched DNA. Asymmetric DNA stars with higher calculated rotational diffusivities also have higher mobilities. When a mutated base is present in junctions with low degrees of branch length asymmetry, adjacent to the branch point, the mobility increases in comparison to the fully complementary molecules. The reason for this increased mobility is unclear, here, we propose that the mismatched base introduces additional flexibility to the arm containing the mutation leading to higher conformational freedom and enhanced mobility in gels. When a mismatched base is present in junctions with high degrees of branch length asymmetry, the opposite result is obtained. Here, the mutated species has a lower mobility. This result is argued to arise from incomplete hybridization and/or frayed ends. Finally, we have shown that by using two of the branch point oligonucleotides as probe molecules, mutations known to occur at specific sites can be detected through the mobility shift. If the sequences of the probe chains are changed in a controlled manner, the location and base of the mutant can also be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号