首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of pseudo-binary GeS2-PbI2, Ga2S3(GaS)-PbI2 and pseudo-ternary GeS2-Ga2S3-PbI2 chalcohalide systems were investigated by Raman scattering spectroscopy. By evolving the vibrational bands as a function of PbI2 content, it was verified that the effect of addition of PbI2 to the glass network is threefold, namely: (i) the conversion of GeS4 tetrahedra to GeS3I and GeS2I2 structural units, (ii) the destruction of ethane-like S3Ga(Ge)-(Ge)GaS3 structural units and formation of GaS3I and GeS3I ones and (iii) formation of short S-S chains and [PbIn] structural units when the concentration of PbI2 is high.  相似文献   

2.
(EnH2)2Ge2S6的合成与结构表征   总被引:2,自引:0,他引:2  
用溶剂热方法制备了(EnH2)2Ge2S6单晶.单晶X射线衍射分析结果表明,(EnH2)2Ge2S6属单斜晶系,P2(1)/n空间群,晶胞参数a=0.67125(5)nm,b=1.12290(4)nm,c=1.07518(4)nm,β=92.288(2)°,Z=2.利用DSC及TG分析研究了其热稳定性,结果表明,该化合物在200℃以下能够稳定存在.  相似文献   

3.
Nanowires of GeS(2) and GeSe(2) have been obtained by novel chemical routes involving the decomposition of organo-ammonium precursors containing super-tetrahedral Ge(4)S(10) and the dimeric Ge(2)Se(6) units.  相似文献   

4.
Chen MC  Li P  Zhou LJ  Li LH  Chen L 《Inorganic chemistry》2011,50(24):12402-12404
Two new noncentrosymmetric quaternary sulfides, La(2)Ga(2)GeS(8) (1) and Eu(2)Ga(2)GeS(7) (2), have been synthesized by high-temperature solid-state reactions. The structure change on going from 1 to 2 to the known Li(2)Ga(2)GeS(6) (3) nicely shows that the reduced cation charge-compensation requirement causes a decrease in the number of terminal S atoms per formula, which is a key to determining the connectivity of the GaS(4) and GeS(4) building units. Powder sample 2 exhibits a strong second-harmonic-generation (SHG) response of about 1.6 times the benchmark AgGaS(2) at 2.05 μm laser radiation, a non type I phase-matchable behavior, and a comparable transparency region. The SHG intensities of these compounds originate from the electronic transitions from S 3p states to La/Eu/Li-S, Ga-S, and Ge-S antibonding states according to Vienna ab initio simulation package studies.  相似文献   

5.
Reaction of [GeCl(2)(dioxane)] with [18]aneS(6) (1,4,7,10,13,16-hexathiacyclooctadecane) gives the neutral [GeCl(2)([18]aneS(6))] which forms a supramolecular sheet network involving exocyclic coordination, with the macrocycles bridging Ge atoms which are in a pseudo-trigonal bipyramidal environment from two Cl and two S atoms (saw-horse), with one lone pair assumed to occupy the remaining equatorial void. Conversely, using the mixed S/O macrocycles [18]aneS(3)O(3) (1,4,7-trithia-10,13,16-trioxacyclooctadecane) and [15]aneS(2)O(3) (1,4-dithia-7,10,13-trioxacyclopentadecane) (L) leads to the monocationic pentagonal pyramidal [GeCl(L)](+) whose structures show endocyclic Ge coordination, and displacement of one Cl. The Ge-S and Ge-O bond lengths are surprisingly disparate in these two complexes, and in the former the coordinated Cl is axial, while in the latter it occupies the pentagonal plane (with an S atom axial). Cyclic selenoethers form one-dimensional or two-dimensional supramolecular assemblies with Ge(ii) halides, including [GeCl(2)([8]aneSe(2))] ([8]aneSe(2) = 1,5-diselenacyclooctane), [(GeCl(2))(2)([16]aneSe(4))] ([16]aneSe(4) = 1,5,9,13-tetraselenacyclohexadecane), [GeBr(2)([16]aneSe(4))] and [(GeI(2))(2)([16]aneSe(4))]·GeI(4)- these represent the first germanium species with selenoether ligation. Structural studies on each of these show exocyclic GeX(2) coordination, giving networks based upon Se(2)X(2) coordination at Ge(ii) with a distorted pseudo-trigonal bipyramidal environment in which the Ge-based lone pair is assumed to occupy the vacant equatorial vertex. Further weak GeX contacts are also evident in some cases. The weak, secondary GeS/Se and GeX interactions that pervade these systems may be regarded as a further type of supramolecular interaction allowing assembly of new network structures, and the long II contacts evident between the GeI(2) and GeI(4) units in [(GeI(2))(2)([16]aneSe(4))]·GeI(4) probably provide a small thermodynamic contribution leading to co-crystallisation of ordered GeI(4) molecules within the network.  相似文献   

6.
A new family of Ag-substituted pseudoquaternary alkali-seleno-germanates has been synthesized by two solid-state routes: the conventional flux method and metathesis. This family includes a series of semiconductors with varying amounts of Ag+ substituted for Na+ in Na8Ge4Se10 to form AgxNa(8-x)Ge4Se10, [x = 0.31 (I), 0.67 (II), 0.77 (III), 0.87 (IV), 1.05 (V), 1.09 (VI)] and another phase with a different composition AgxNa(6-x)Ge2Se7 (x = 1.76), VII, related to Na6Ge2Se7. In I-VI, Ge4Se10(8-) constitutes a 6-membered chairlike unit with a Ge-Ge bond, while in VII, a corner-shared dimer of GeSe4 tetrahedra (Ge2Se76-) acts as the building unit. The single-crystal structure analysis indicates that there is a phase transition from P to C2/c, in changing from pure Na8Ge4Se10 to AgxNa(8-x)Ge4 Se10 (I-VI), while there is no phase transition between pure Na6Ge2Se7 and AgxNa(6-x)Ge2Se7 (x = 1.76). The structures of I-VI may be described in terms of layers of cubic close-packed Se2- anions. In between the Se layers, octahedral holes fully occupied by Na+ and mixed Ag+/Na+ cations alternate with layers formed of octahedral holes fully occupied by Na+ and Ge26+ cations. Two adjacent Ge26+ cations form a chairlike Ge4Se10(8-) anion in which Ge-Ge bonds are oriented almost parallel to the Se layers. In contrast, VII does not have close-packed anions. Corner-shared GeSe4 tetrahedra (Ge2Se7(6-) dimer) and AgSe4 tetrahedra form layers that are cross-linked by Na/AgSe4 tetrahedra to form a 3-dimensional (3-D) structure. An optical property investigation indicates a red shift in the band gap of AgxNa(8-x)Ge4Se10 (x = 0.67)(II) as compared to that of pure Na8Ge4Se10. Raman data also indicate a red shift of the Ge-Se stretching mode in the Ag+-substituted phase II (x = 0.67) compared to that of Na8Ge4Se10.  相似文献   

7.
X-ray diffraction analysis reveals the thiogermanic acid H(4)Ge(4)S(10) possesses discrete adamantane-like Ge(4)S(10)(4)(-) complex anions. Each thioanion is composed of four corner shared GeS(2.5)(-) tetrahedral units. Crystals were grown from anhydrous liquid hydrogen sulfide reactions with glassy germanium sulfide at room temperature. The crystal structure was solved and refined from single crystal diffractometer data (Mo Kalpha radiation) obtained at 173 K. H(4)Ge(4)S(10) is triclinic, centrosymmetric space group Ponemacr;, with a = 8.621(4) A, b = 9.899(4) A, c = 10.009(4) A, alpha = 85.963(7) degrees, beta = 64.714(7) degrees, gamma = 89.501(8) degrees, and Z = 2. Average bridging and terminal d(Ge-S) distances are 2.229 and 2.206 A, respectively. Vibrational mode assignments are reported from Raman scattering and IR absorption spectra of polycrystalline samples. The nu(s)(Ge-S-Ge) and nu(s)(Ge-S(-)) stretching modes are observed at 354 and 405 cm(-)(1), respectively.  相似文献   

8.
A facile room-temperature electrochemical deposition process for germanium sulfide (GeS(x)) has been developed with the use of an ionic liquid as an electrolyte. The electrodeposition mechanism follows the induced codeposition of Ge and S precursors in ionic liquids generating GeS(x) films. The electrodeposited GeS(x) films were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and Raman and X-ray photoelectron spectroscopy (XPS). An aqueous-based Ag doping method was used to dope electrochemically grown GeS(x) films with controlled doping compared to the conventional process, which can be used in next-generation solid-state memory devices.  相似文献   

9.
Reported here is an extraordinary and unprecedented sulfide containing icosahedral [Cu8S12]16- clusters that behave like a pseudo-octahedral unit in the bonding pattern and are linked through two monomeric GeS4(4-) and four dimeric Ge2S6(4-) units into a covalent 3-D open framework. Its large Cu to Ge ratio is highly unusual in 3-D open-framework sulfides and contributes to its low electronic band gap and the visible light photocatalytic activity.  相似文献   

10.
High oxygen content apatite germanates, La(10)Ge(6-x)W(x)O(27+x), have been prepared by doping on the Ge site with W. In addition to increasing the oxygen content, this doping strategy is shown to result in stabilisation of the hexagonal lattice, and yield high conductivities. Structural studies of La(10)Ge(5.5)W(0.5)O(27.5) show that the interstitial oxygen sites are associated to a different degree with the Ge/WO(4) tetrahedra, leading to five coordinate Ge/W and significant disorder for the oxygen sites associated with these units. Raman spectroscopy studies suggest that in the case of the WO(5) units, the interstitial oxygen is more tightly bonded and therefore not as mobile as in the case of the GeO(5) units, thus not contributing significantly to the conduction process.  相似文献   

11.
Uhl W  Claesener M 《Inorganic chemistry》2008,47(11):4463-4470
Treatment of trimethylsilylethynylbenzenes C6H6-x(C[TRIPLE BOND]C-SiMe3)x(x=1-3) with the hydridodichlorogallium compound H-GaCl2 afforded, almost quantitatively, the alkenylphenyl compounds C6H6-x[C(H)C(SiMe3)-GaCl2]x[x=1 (6), 2 (7), and 3 (8)] by hydrogallation. Only compound 6 was readily soluble in n-hexane; it formed dimers via Ga-Cl bridges. The bisalkenyl compound 7 was only sparingly soluble; its molecular structure consisted of a singular dimeric formula unit with a cyclophane-type constitution and two bridging Ga 2Cl 2 heterocycles. The overall structure may be described by a molecular box formed by a large macrocycle comprising 22 Ga, C, and Cl atoms. Compound 8 proved to be insoluble in hydrocarbon solvents. Its molecular structure could not be detected. Extraction of the solid raw products of 7 and 8 with diethyl ether yielded small quantities of the ether adducts C6H6-x[C(H)C(SiMe3)-GaCl2(OEt2)]x(x=2, 3) [7(OEt2)2 and 8(OEt2)3], both of which are monomeric because of the coordinative saturation of their gallium atoms. The tetraalkyne 1,2,4,5-tetrakis(trimethylsilylethynyl)benzene gave a different reaction course. Complete hydrogallation resulted in the release of 2 equiv of GaCl3, and neighboring alkenyl groups of the product 9 were connected by GaCl bridges to form seven-membered heterocycles and an overall tricyclic compound. Compound 9 was characterized as a diethyl ether adduct.  相似文献   

12.
A new quinary rare earth sulfide-halide compound has been synthesized and its structure determined by single-crystal X-ray diffraction. LaCa(2)GeS(4)Cl(3) crystallizes in the noncentrosymmetric hexagonal space group -P6(3)mc (No. 186) with Z = 2, a = 9.731(1) ?, and c = 6.337(1) ?. Lanthanum and calcium are mixed on a pseudo-trigonal prismatic site, coordinated to three sulfur atoms on one triangular face and three chlorine atoms on the other. Isolated, slightly distorted tetrahedra of GeS(4) are oriented with a tetrahedral 3-fold axis aligned along the crystallographic 3-fold rotation axis. Preliminary optical studies indicate that this material has a useful optical window extending approximately from 0.5 to 10 &mgr;m. Nonlinear optical activity of LaCa(2)GeS(4)Cl(3) is demonstrated by the generation of green light when pumped with a 1.064 &mgr;m Nd:YAG laser.  相似文献   

13.
Glasses having the composition (100 - x)As2P2S8-xGa2S3 with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (Tg) and the stability parameter against crystallization (Tx - Tg) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and 31P nuclear magnetic resonance. On the basis of the observed vibrations and the strength of the 31P-31P homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x or= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS 4/2 unit (Q4) species carrying a single positive formal charge.  相似文献   

14.
Fu YJ  Yang X  Wang XB  Wang LS 《Inorganic chemistry》2004,43(12):3647-3655
We used photoelectron spectroscopy (PES) to study how the terminal ligands influence the electronic structure and redox properties of the [4Fe-4S] cubane in several series of ligand-substituted analogue complexes: [Fe(4)S(4)Cl(4-x)(CN)(x)](2-), [Fe(4)S(4)Cl(4-x)(SCN)(x)](2-), [Fe(4)S(4)Cl(4-x)(OAc)(x)](2-), [Fe(4)S(4)(SC(2)H(5))(4-x)(OPr)(x)](2-), and [Fe(4)S(4)(SC(2)H(5))(4-x)Cl(x)](2-) (x = 0-4). All the ligand-substituted complexes gave similar PES spectral features as the parents, suggesting that the mixed-ligand coordination does not perturb the electronic structure of the cubane core significantly. The terminal ligands, however, have profound effects on the electron binding energies of the cubane and induce significant shifts of the PES spectra, increasing in the order SC(2)H(5)(-) --> Cl(-) --> OAc(-)/OPr(-) --> CN(-) --> SCN(-). A linear relationship between the electron binding energies and the substitution number x was observed for each series, indicating that each ligand contributes independently and additively to the total binding energy. The electron binding energies of the gaseous complexes represent their intrinsic oxidation energies; the observed linear dependence on x is consistent with similar observations on the redox potentials of mixed-ligand cubane complexes in solution. The current study reveals the electrostatic nature of the interaction between the [4Fe-4S] cubane core and its coordination environment and provides further evidence for the electronic and structural stability of the cubane core and its robustness as a structural and functional unit in Fe-S proteins.  相似文献   

15.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

16.
Dixon E  Hayward MA 《Inorganic chemistry》2011,50(15):7250-7256
The low-temperature topotactic reduction of Sr(3)Fe(2-x)Co(x)O(5)Cl(2) oxychloride phases with LiH allows the preparation of phases of composition Sr(3)Fe(2-x)Co(x)O(4)Cl(2) (0 ≤ x ≤ 1). The reduced phases adopt body-centered tetragonal structures which are isostructural with Sr(3)Fe(2)O(4)Cl(2) and contain square-planar (Fe/Co)O(4) centers connected into apex-linked sheets, analogous to the CuO(2) sheets present in superconducting cuprate phases. As the cobalt concentration in Sr(3)Fe(2-x)Co(x)O(4)Cl(2) is increased the antiferromagnetic order of the Sr(3)Fe(2)O(4)Cl(2) host phase is suppressed, ultimately leading to spin-glass behavior, at low temperature, in Sr(3)Fe(2-x)Co(x)O(4)Cl(2) phases with x ≥ 0.8. The limited influence of cobalt substitution on the reactions which form the Sr(3)Fe(2-x)Co(x)O(4)Cl(2) phases is discussed and contrasted to that of the related SrFeO(3-δ)-SrFeO(2) system.  相似文献   

17.
Two new quaternary aluminum silicides, RE8Ru12Al49Si9(Al(x)Si12-x) (x approximately 4; RE = Pr, Sm), have been synthesized from Sm (or Sm2O3), Pr, Ru, and Si in molten aluminum between 800 and 1000 degrees C in sealed fused silica tubes. Both compounds form black shiny crystals that are stable in air and NaOH. The Nd analog is also stable. The compounds crystallize in a new structural type. The structure, determined by single-crystal X-ray diffraction, is cubic, space group Pm3m with Z = 1, and has lattice parameters of a = 11.510(1) A for Sm8Ru12Al49Si9(Al(x)Si12-x) and a = 11.553(2) A for Pr8Ru12Al49Si9(Al(x)Si12-x) (x approximately 4). The structure consists of octahedral units of AlSi6, at the cell center, Si2Ru4Al8 clusters, at each face center, SiAl8 cubes, at the middle of the cell edges, and unique (Al,Si)12 cuboctohedral clusters, at the cell corners. These different structural units are connected to each other either by shared atoms, Al-Al bonds, or Al-Ru bonds. The rare earth metal atoms fill the space between various structural units. The Al/Si distribution was verified by single-crystal neutron diffraction studies conducted on Pr8Ru12Al49Si9(Al(x)Si12-x). Sm8Ru12Al49Si9(Al(x)Si12-x) and Pr8Ru12Al49Si9(Al(x)Si12-x) show ferromagnetic ordering at Tc approximately 10 and approximately 20 K, respectively. A charge of 3+ can be assigned to the rare earth atoms while the Ru atoms are diamagnetic.  相似文献   

18.
Ba(2)Cu(6-x)STe(4) and Ba(2)Cu(6-x)Se(y)Te(5-y) were prepared from the elements in stoichiometric ratios at 1123 K, followed by slow cooling. These chalcogenides are isostructural, adopting the space group Pbam (Z = 2), with lattice dimensions of a = 9.6560(6) ?, b = 14.0533(9) ?, c = 4.3524(3) ?, and V = 590.61(7) ?(3) in the case of Ba(2)Cu(5.53(3))STe(4). A significant phase width was observed in the case of Ba(2)Cu(6-x)Se(y)Te(5-y) with at least 0.17(3) ≤ x ≤ 0.57(4) and 0.48(1) ≤ y ≤ 1.92(4). The presence of either S or Se in addition to Te appears to be required for the formation of these materials. In the structure of Ba(2)Cu(6-x)STe(4), Cu-Te chains running along the c axis are interconnected via bridging S atoms to infinite layers parallel to the a,c plane. These layers alternate with the Ba atoms along the b axis. All Cu sites exhibit deficiencies of up to 26%. Depending on y in Ba(2)Cu(6-x)Se(y)Te(5-y), the bridging atom is either a Se atom or a Se/Te mixture when y ≤ 1, and the Te atoms of the Cu-Te chains are partially replaced by Se when y > 1. All atoms are in their most common oxidation states: Ba(2+), Cu(+), S(2-), Se(2-), and Te(2-). Without Cu deficiencies, these chalcogenides were computed to be small gap semiconductors; the Cu deficiencies lead to p-doped semiconducting properties, as experimentally observed on selected samples.  相似文献   

19.
Semitransparent dark-red or ruby-red moisture- and air-sensitive single crystals of A(10+x)[Ge(9)](2)[W(1-x)Nb(x)O(4)] (A = K, Rb; x = 0, 0.35) were obtained by high-temperature solid-state reactions. The crystal structure of the compounds was determined by single-crystal X-ray diffraction experiments. They crystallize in a new structure type (P2(1)/c, Z = 4) with a = 13.908(1) ?, b = 15.909(1) ?, c = 17.383(1) ?, and β = 90.050(6)° for K(10.35(1))[Ge(9)](2)[W(0.65(1))Nb(0.35(1))O(4)]; a = 14.361(3) ?, b = 16.356(3) ?, c = 17.839(4) ?, and β = 90.01(3)° for Rb(10.35(1))[Ge(9)](2)[W(0.65(1))Nb(0.35(1))O(4)]; a = 13.8979(2) ?, b = 15.5390(3) ?, c = 17.4007(3) ?, and β = 90.188(1)° for K(10)[Ge(9)](2)WO(4); and a = 14.3230(7) ?, b = 15.9060(9) ?, c = 17.8634(9) ?, and β = 90.078(4)° for Rb(10)[Ge(9)](2)WO(4). The compounds contain discrete Ge(9)(4-) Wade's nido clusters and WO(4)(2-) (or NbO(4)(3-)) anions, which are packed according to a hierarchical atom-to-cluster replacement of the Al(2)Cu prototype and are separated by K and Rb cations, respectively. The alkali metal atoms occupy the corresponding tetrahedral sites of the Al(2)Cu prototype. The amount of the alkali metal atoms on these diamagnetic compounds corresponds directly to the amount of W substituted by Nb. Thus, the transition metals W and Nb appear with oxidation numbers +6 and +5, respectively, in the vicinity of a [Ge(9)](4-) polyanion. The crystals of the mixed salts were further characterized by Raman spectroscopy. The Raman data are in good agreement with the results from the X-ray structural analyses.  相似文献   

20.
The structures of sodium aluminophosphate glasses prepared by both sol-gel as well as melt-cooling routes have been extensively characterized by high-resolution solid-state 23Na, 27Al, and 31P single and double-resonance NMR techniques, including quantitative connectivity studies by 27Al <--> 31P and 23Na <--> 31P rotational echo double-resonance (REDOR) methods. Studies along four compositional lines, I: (AlPO4)x -(NaPO3)1-x, II: (Na2O)x -(AlPO4)1-x, III: (NaAlO2)x -(NaPO3)1-x, and IV: (Al2O3)x (NaPO3)1-x, reveal that the network structures of those glasses that are accessible by either preparation method are essentially identical. However, the significantly extended glass-forming ranges available by the sol-gel route facilitate exploration of the structure/composition relationships in more detail, revealing a number of interesting universal features throughout the whole glass system. Both short- and medium-range order appear to be controlled strongly by the O/P ratio of the glasses studied: Up to an O/P ratio of 3.5 (pyrophosphate composition), aluminum is predominantly six-coordinated and fully connected to phosphorus (Al(OP)6 sites). In the region 3.5 < or = O/P < or = 4.0, a dramatic structural transformation takes place, leading to the appearance of additional four- and five-coordinated aluminum species whose second coordination spheres are also entirely dominated by phosphorus. The structure of glasses with an O/P ratio of precisely 4.0 (orthophosphate) is dominated by Al(OP)4 units. As the O/P ratio increases beyond 4.0, the average extent of Al-O-P connectivity is decreased significantly. Here, new types of five- and six-coordinated aluminum units, which are only weakly connected to phosphorus, are formed, while the network modifier is attracted mainly by the phosphate units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号