共查询到20条相似文献,搜索用时 12 毫秒
1.
This note discusses the asymptotic distribution of two scale and location invariant estimators of two scale parameters in the multiple linear regression model. Both of these estimators need an initial estimator of the regression parameter vector. The asymptotic distribution of one of these estimators does not depend on this initial estimator. Both of these estimators are useful in the computation of scale and translation invariant adaptive estimators and M-estimators of the regression parameter vector. 相似文献
2.
In this paper, we carry out an in-depth theoretical investigation for inference with missing response and covariate data for general regression models. We assume that the missing data are missing at random (MAR) or missing completely at random (MCAR) throughout. Previous theoretical investigations in the literature have focused only on missing covariates or missing responses, but not both. Here, we consider theoretical properties of the estimates under three different estimation settings: complete case (CC) analysis, a complete response (CR) analysis that involves an analysis of those subjects with only completely observed responses, and the all case (AC) analysis, which is an analysis based on all of the cases. Under each scenario, we derive general expressions for the likelihood and devise estimation schemes based on the EM algorithm. We carry out a theoretical investigation of the three estimation methods in the normal linear model and analytically characterize the loss of information for each method, as well as derive and compare the asymptotic variances for each method assuming the missing data are MAR or MCAR. In addition, a theoretical investigation of bias for the CC method is also carried out. A simulation study and real dataset are given to illustrate the methodology. 相似文献
3.
Volker Krätschmer 《Journal of multivariate analysis》2006,97(3):633-654
Linear regression models with vague concepts extend the classical single equation linear regression models by admitting observations in form of fuzzy subsets instead of real numbers. They have recently been introduced [cf. Krätschmer, Induktive statistik auf basis unscharfer meßkonzepte am beispiel linearer regressionsmodelle, Unpublished Habilitation Monograph, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001] to improve the empirical meaningfulness of the relationship between the involved items by a more sensitive attention to the problems of data measurement, in particular the fundamental problem of adequacy. The parameters of such models are still real numbers, and a method of estimation can be applied which extends directly the ordinary least-squares method. This paper deals with some first asymptotic properties of estimators obtained by the method. Firstly, strong consistency will be shown, and secondly, the convergence rate will be investigated. The later result will be the starting point for a future study which will calculate the limit distributions of the estimators. 相似文献
4.
We consider a test of the simple hypothesis =0 based on some biased estimator. Under a certain condition the corresponding test statistic coincides with the usualF-statistic based on the least squares estimator. Surprisingly, this condition is met by several well-known biased estimators. 相似文献
5.
Hirokazu Yanagihara 《Journal of multivariate analysis》2007,98(1):1-29
In this paper, we propose a new estimator for a kurtosis in a multivariate nonnormal linear regression model. Usually, an estimator is constructed from an arithmetic mean of the second power of the squared sample Mahalanobis distances between observations and their estimated values. The estimator gives an underestimation and has a large bias, even if the sample size is not small. We replace this squared distance with a transformed squared norm of the Studentized residual using a monotonic increasing function. Our proposed estimator is defined by an arithmetic mean of the second power of these squared transformed squared norms with a correction term and a tuning parameter. The correction term adjusts our estimator to an unbiased estimator under normality, and the tuning parameter controls the sizes of the squared norms of the residuals. The family of our estimators includes estimators based on ordinary least squares and predicted residuals. We verify that the bias of our new estimator is smaller than usual by constructing numerical experiments. 相似文献
6.
Michael J. Daniels 《Journal of multivariate analysis》2006,97(5):1185-1207
We explore simultaneous modeling of several covariance matrices across groups using the spectral (eigenvalue) decomposition and modified Cholesky decomposition. We introduce several models for covariance matrices under different assumptions about the mean structure. We consider ‘dependence’ matrices, which tend to have many parameters, as constant across groups and/or parsimoniously modeled via a regression formulation. For ‘variances’, we consider both unrestricted across groups and more parsimoniously modeled via log-linear models. In all these models, we explore the propriety of the posterior when improper priors are used on the mean and ‘variance’ parameters (and in some cases, on components of the ‘dependence’ matrices). The models examined include several common Bayesian regression models, whose propriety has not been previously explored, as special cases. We propose a simple approach to weaken the assumption of constant dependence matrices in an automated fashion and describe how to compute Bayes factors to test the hypothesis of constant ‘dependence’ across groups. The models are applied to data from two longitudinal clinical studies. 相似文献
7.
8.
We study a multivariate ultrastructural measurement error (MUME) model with more than one response variable. This model is a synthesis of multivariate functional and structural models. Three consistent estimators of regression coefficients, satisfying the exact linear restrictions have been proposed. Their asymptotic distributions are derived under the assumption of a non-normal measurement error and random error components. A simulation study is carried out to investigate the small sample properties of the estimators. The effect of departure from normality of the measurement errors on the estimators is assessed. 相似文献
9.
Isabel Molina 《Journal of multivariate analysis》2009,100(5):963-980
This work aims to predict exponentials of mixed effects under a multivariate linear regression model with one random factor. Such quantities are of particular interest in prediction problems where the dependent variable is the logarithm of the variable that is the object of inference. Bias-corrected empirical predictors of the target quantities are defined. A second-order approximation for the mean crossed product error of two of these predictors is obtained, where the mean squared error is a particular case. An estimator of the mean crossed product error with second-order bias is proposed. Finally, results are illustrated through an application related to small area estimation. 相似文献
10.
Various properties of the regression vector produced by cyclic subspace regression with regard to the meancentered linear regression equation are put forth. In particular, the subspace associated with the creation of is shown to contain a basis that maximizes certain covariances with respect to , the orthogonal projection of onto a specific subspace of the range of X. This basis is constructed. Moreover, this paper shows how the maximum covariance values effect the . Several alternative representations of are also developed. These representations show that is a modified version of the l-factor principal components regression vector , with the modification occurring by a nonorthogonal projection. Additionally, these representations enable prediction properties associated with to be explicitly identified. Finally, methods for choosing factors are spelled out. 相似文献
11.
The generalized information criterion (GIC) proposed by Rao and Wu [A strongly consistent procedure for model selection in a regression problem, Biometrika 76 (1989) 369-374] is a generalization of Akaike's information criterion (AIC) and the Bayesian information criterion (BIC). In this paper, we extend the GIC to select linear mixed-effects models that are widely applied in analyzing longitudinal data. The procedure for selecting fixed effects and random effects based on the extended GIC is provided. The asymptotic behavior of the extended GIC method for selecting fixed effects is studied. We prove that, under mild conditions, the selection procedure is asymptotically loss efficient regardless of the existence of a true model and consistent if a true model exists. A simulation study is carried out to empirically evaluate the performance of the extended GIC procedure. The results from the simulation show that if the signal-to-noise ratio is moderate or high, the percentages of choosing the correct fixed effects by the GIC procedure are close to one for finite samples, while the procedure performs relatively poorly when it is used to select random effects. 相似文献
12.
Jib Huh 《Journal of multivariate analysis》2010,101(7):1681-1700
In this paper, we consider the regression function or its νth derivative in generalized linear models which may have a change/discontinuity point at an unknown location. The location and its jump size are estimated with the local polynomial fits based on one-sided kernel weighted local-likelihood functions. Asymptotic distributions of the proposed estimators of location and jump size are established. The finite-sample performances of the proposed estimators with practical aspects are illustrated by simulated and beetle mortality examples. 相似文献
13.
In this paper, the problem of nonnegative quadratic estimation of the mean squared errors of minimax estimators of in the linear regression modelE(y)=X, VAR(y) = 2 is discussed. An explicit formula for the admissible nonnegative minimum biased estimator is given. Some applications to one-way classification model are also considered. 相似文献
14.
Guy Martial Nkiet 《Journal of multivariate analysis》2012,105(1):151-163
We propose a criterion for variable selection in discriminant analysis. This criterion permits to arrange the variables in decreasing order of adequacy for discrimination, so that the variable selection problem reduces to that of the estimation of suitable permutation and dimensionality. Then, estimators for these parameters are proposed and the resulting method for selecting variables is shown to be consistent. In a simulation study, we compute proportions of correct classification after variable selection in order to gain understanding of the performance of our proposal and to compare it to existing methods. 相似文献
15.
16.
Christian Hennig 《Journal of multivariate analysis》2003,86(1):183-212
Fixed point clustering is a new stochastic approach to cluster analysis. The definition of a single fixed point cluster (FPC) is based on a simple parametric model, but there is no parametric assumption for the whole dataset as opposed to mixture modeling and other approaches. An FPC is defined as a data subset that is exactly the set of non-outliers with respect to its own parameter estimators. This paper concentrates upon the theoretical foundation of FPC analysis as a method for clusterwise linear regression, i.e., the single clusters are modeled as linear regressions with normal errors. In this setup, fixed point clustering is based on an iteratively reweighted estimation with zero weight for all outliers. FPCs are non-hierarchical, but they may overlap and include each other. A specification of the number of clusters is not needed. Consistency results are given for certain mixture models of interest in cluster analysis. Convergence of a fixed point algorithm is shown. Application to a real dataset shows that fixed point clustering can highlight some other interesting features of datasets compared to maximum likelihood methods in the presence of deviations from the usual assumptions of model based cluster analysis. 相似文献
17.
In this paper we present recentered confidence sets for the parameters of a logistic regression model based on preliminary minimum ?-divergence estimators. Asymptotic coverage probabilities are given as well as a simulation study in order to analyze the coverage probabilities for small and moderate sample sizes. 相似文献
18.
Francis Comets Mikael Falconnet Oleg Loukianov Dasha Loukianova Catherine Matias 《Stochastic Processes and their Applications》2014
We consider a one dimensional ballistic random walk evolving in an i.i.d. parametric random environment. We provide a maximum likelihood estimation procedure of the parameters based on a single observation of the path till the time it reaches a distant site, and prove that the estimator is consistent as the distant site tends to infinity. Our main tool consists in using the link between random walks and branching processes in random environments and explicitly characterising the limiting distribution of the process that arises. We also explore the numerical performance of our estimation procedure. 相似文献
19.
Volker Krätschmer 《Journal of multivariate analysis》2006,97(5):1044-1069
Linear regression models with vague concepts extend the classical single equation linear regression models by admitting observations in form of fuzzy subsets instead of real numbers. They have lately been introduced (cf. [V. Krätschmer, Induktive Statistik auf Basis unscharfer Meßkonzepte am Beispiel linearer Regressionsmodelle, unpublished postdoctoral thesis, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001; V. Krätschmer, Least squares estimation in linear regression models with vague concepts, Fuzzy Sets and Systems, accepted for publication]) to improve the empirical meaningfulness of the relationships between the involved items by a more sensitive attention to the problems of data measurement, in particular, the fundamental problem of adequacy. The parameters of such models are still real numbers, and a method of estimation can be applied which extends directly the ordinary least squares method. In another recent contribution (cf. [V. Krätschmer, Strong consistency of least squares estimation in linear regression models with vague concepts, J. Multivar. Anal., accepted for publication]) strong consistency and -consistency of this generalized least squares estimation have been shown. The aim of the paper is to complete these results by an investigation of the limit distributions of the estimators. It turns out that the classical results can be transferred, in some cases even asymptotic normality holds. 相似文献
20.
In this paper, a linear model selection procedure based on M-estimation is proposed, which includes many classical model selection criteria as its special cases. It is shown that the
proposed criterion is strongly consistent under certain mild conditions, for instance without assuming normality of the distribution
of the random errors. The results from a simulation study are also presented.
Received: 13 October 1997 / Revised version: 10 August 1998 相似文献