首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic and selective decomposition of cyclohexylhydroperoxide has been demonstrated using dinuclear iron catalysts in acetonitrile. The complex, Fe2OL2(ClO4)4, [L=N,N′-dimethyl-2,11-diaza[3,3](2,6)pyridinophane] was found to be the most stable (up to 9 000 T.N.) and selective catalyst. Furthermore, cyclohexylhydroperoxide was found efficient as an oxidant during alkane oxidation. A free radical mechanism has been proposed for both peroxide decomposition and alkane oxidation, implicating the formation of iron–alkylhydroperoxo species.  相似文献   

2.
Novel Schiff bases of ferrocenecarboxaldehyde bearing 2,6-di-tert-butyphenol fragments N-(3,5-di-tert-butyl-4-hydroxyphenyl)iminomethylferrocene (1) and N-(3,5-di-tert-butyl-4-hydroxybenzyl)iminomethylferrocene (2) have been synthesized and characterized. The oxidation of the compounds 1 and 2 by PbO2 in solution leads to the formation of stable phenoxyl radicals 1′ and 2′ studied by EPR spectroscopy. The redox properties of ferrocenes 1 and 2 were studied using cyclic voltammetry.  相似文献   

3.
Poly(styrene-co-dimethylaminoethyl methacrylate) and poly(methyl methacrylate-co- dimethylaminoethyl methacrylate) were prepared by solution polymerization. These polymers were quaternized by methyl iodide and n-hexyl bromide. The produced polymers were used as support in the aqueous oxidation of 2,6-di-tert-butylphenol (DBP) using hydrogen peroxide catalyzed by tris(2-aminoethyl)amine copper(II) complex “Cu(II)-tren complex” anchored on the prepared polymers. The products obtained from the reactions were 3,3′-5,5′-tetra-tert-butyldiphenoquinine (DPQ) and 2,6-di-tert-butyl-p-benzoquinone (BQ). No reaction products were obtained when the reaction was carried out in the absence of polymeric catalyst. The polymer composition and reaction medium greatly affect product distribution of the reaction. Polar organic solvent like DMF and methanol favor the formation of DPQ, while nonploar organic solvent like benzene and methylene chloride favor the formation of BQ. Hydrophobic branches of polymers 6 (PS-HexBr-Cu-TREN) and 8 (PMMA-HexBr-Cu-TREN) favor BQ formation as the weight of support increased. On the other hand, DPQ is favored in the presence of hydrophilic branches as observed for both polymeric catalysts 5 (PS-MeI-Cu-TREN) and 7 (PMMA-MeI-Cu-TREN).  相似文献   

4.
《印度化学会志》2021,98(2):100006
The new cis-dioxomolybdenum (VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3)(H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 = N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide) have been synthesized and characterized via IR, 1H and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The catalytic activities of complexes 2 and 3, and the analogous known complex [MoO2(L1)(H2O)] (1) (H2L1 = N'-(2-hydroxybenzylidene)-4-methylbenzohydrazide) have been evaluated for various oxidation reactions, viz. oxygen atom transfer from dimethyl sulfoxide to triphenylphosphine, sulfoxidation of methyl-p-tolylsulfide or epoxidation of different alkenes using tert-butyl hydroperoxide as terminal oxidant. The catalytic activities were found to be comparable for all three complexes, but complexes 1 and 3 showed better catalytic performances than complex 2, which contains a more sterically demanding ligand than the other two complexes.  相似文献   

5.
The oxidative coupling reaction of 2,6-dimethylphenol with H2O2 catalyzed by a copper(Ⅱ) Schiff complex in aqueous and Triton X-100 micellar solution under mild conditions was investigated. The kinetics of formation of 3,3′,5,5′-tetramethyl-4,4′-diphenoquinone (DPQ) was studied. Rate constant k2 were obtained. The optimum pH for DPQ generation reaction is 7.25. The main product was DPQ in aqueous buffer solution, but PPE and the oxidized products of PPE remained in Triton X-100 micellar solution.  相似文献   

6.
The catalytic activity of dioxidobis{2-[(E)-p-tolyliminomethyl]phenolato}molybdenum(VI) complex was studied, for the first time, in the selective oxidation of various primary and secondary alcohols using tert-BuOOH as oxidant under organic solvent-free conditions at room temperature. The effect of different solvents was studied in the oxidation of benzyl alcohol in this catalytic system. It was found that, under organic solvent-free conditions, the catalyst oxidized various primary and secondary alcohols to their corresponding aldehyde or ketone derivatives with high yield. The effects of other parameters such as oxidant and amount of catalyst were also investigated. Among different oxidants such as H2O2, NaIO4, tert-BuOOH, and H2O2/urea, tert-BuOOH was selected as oxygen donor in the oxidation of benzyl alcohol. Also, it was found that oxidation of benzyl alcohol required 0.02 mmol catalyst for completion. Dioxomolybdenum(VI) Schiff base complex exhibited good catalytic activity in the oxidation of alcohols with tert-BuOOH under mild conditions. In this catalytic system, different primary alcohols gave the corresponding aldehydes in good yields without further oxidation to carboxylic acids.  相似文献   

7.
Continuous photo flow synthesis of tert-butyl 3-oxo-2-oxabicyclo[2.2.0]hex-5-ene-6-carboxylate (2b) from tert-butyl 2-oxo-2H-pyran-5-carboxylate (1b) has been investigated for scale-up synthesis of cis-3-(tert-butoxycarbonyl)-2,3,4-d3-cyclobutanecarboxylic acid (3c) as a useful building block for preparation of various biologically active compounds and those of material sciences containing cyclobutane ring system(s) labeled with deuterium atoms. Optimization of reaction conditions and modification of the photo flow reaction system have brought about the production of cis-3-(tert-butoxycarbonyl)-2,3,4-d3-cyclobutanecarboxylic acid (3c) with excellent deuterium content in 3.6?g through the continuous photo flow synthesis for 22?h followed by hydrogenation with deuterium gas. Also, application of the product to synthesis of cis-3-((benzyloxycarbonyl)methyl-d2)cyclobutane-1,2,4-d3-carboxylic acid (11) is described for preparation of internal standards of drug candidate compounds in quantitative mass spectrometry analyses in nonclinical and clinical pharmacokinetic studies.  相似文献   

8.
A new dirhodium tetraacetate II involving 1,3-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene I was synthesized and characterized by general spectroscopic tools in the solution state as well as single X-ray crystallographic analysis in the solid state. The catalytic activity of dirhodium tetraacetate carbenoid II was tested for the allylic oxidation, and the improved reactivity to the allylic oxidation was observed compared to that of Rh2(OAc)4. The different electrochemical properties of dirhodium tetraacetate carbenoid II and Rh2(OAc)4 were compared via cyclic voltammetry.  相似文献   

9.
Chiral Schiff-base ligand L was synthesized through six steps in good overall yield from readily available 2-tert-butylphenol and was used to construct one chiral porous metal-metallosalen framework,[Zn5(μ3-OH)2(ZnL)4(H2O)2]·18H2O(1,L=5′,5″-(1E,1′E)-(1R,2R)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(3′-tert-butyl-4′-hydroxybiphenyl-4-carboxylic acid),under mild reaction conditions.1 was characterized by IR,TGA,CD,UV,PL,single-crystal and powder X-ray crystallography.The structure of 1 displays a 3-fold interpenetrating 3D framework with 1D channel of 1.14 nm×0.58nm and imparts unique Zn(salen)units on the surface of the pore,in which(ZnL)2dimer acts as multi-functionlized metalloligand.1 is thermally robust with network decomposition temperature of 400oC and it also exhibits strong photoluminescence in the visible region.  相似文献   

10.
Three kinds of biomimetic heme precursors have been prepared. The first type is based on tetra-aminoporphyrins: either 5,10,15,20-tetrakis (o-aminophenyl)porphyrin (various atropoisomers), or 5,15-bis(2′,6′-diaminophenyl)porphyrin. The second type is based on octa-aminoporphyrins: 5,10,15,20-tetrakis (2′,6′-diamino-4′-tert-butylphenyl)porphyrin. One example of “basket handle” porphyrin demonstrates selective discrimination between O2 and CO with an M value [M=p1/2(O2)/p1/2(CO)] of 105. This is similar to values reported for various natural hemoproteins. The third type is based on aminoporphyrin templates [5, 5,10- or 5,15- and 5,10,15-(2′,6′-dinitro,4′-tert-butylphenyl)porphyrins] which have been tested in asymmetric epoxidation.  相似文献   

11.
《Tetrahedron: Asymmetry》2001,12(22):3105-3111
Axially dissymmetric chiral salen-type ligands 14 and 7 were prepared from the reaction of (R)-(+)-1,1′-binaphthyl-2,2′-diamine with 2,6-dichlorobenzaldehyde, 2,3-dichlorobenzaldehyde, 3,4-dichlorobenzaldehyde or salicylaldehyde in high yields, respectively. The catalytic asymmetric aziridination of alkenes has been examined using these novel chiral ligands. Excellent enantioselectivity in the aziridination of cinnamates has been achieved using the C2-symmetric chiral ligand 1.  相似文献   

12.
A Schiff base ligand derived from 5-bromo-2-hydroxybenzaldehyde and 2,2′-dimethylpropylenediamine (H2L) and its corresponding dioxomolybdenum(VI) complex (Mo(O)2L) has been synthesized and characterized by spectroscopic methods. The adsorption of Mo(O)2L on the surface of silica-coated magnetite nanoparticles via hydrogen bonding led to the formation of (α-Fe2O3)–MCM-41–Mo(O)2L as a heterogeneous catalyst. FT-IR and atomic absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize and investigate the new nanocatalyst. A practical catalytic method for the efficient and highly selective oxidation of a wide range of olefins with hydrogen peroxide and tert-butyl hydroperoxide in ethanol over the prepared molybdenum nanocatalyst was investigated. Under reflux conditions, the oxidation of cyclooctene with tert-butyl hydroperoxide or hydrogen peroxide led to the formation of epoxide as the sole product. The catalyst was reused at least six times without a significant decrease in catalytic activity or selectivity, and without detectable leaching of the catalyst.  相似文献   

13.
Iron and manganese porphyrins containing 2,6-di-tert-butylphenyl groups (R4PFeCl and R4PMnCl) have been synthesized to be further immobilized on silica gels via various spacers. The activity of these porphyrins in the oxidation of alkanes and alkenes by hydrogen peroxide has been studied. 2,6-Di-tert-butylphenol groups decrease the catalytic activity of porphyrins in oxidation processes.  相似文献   

14.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

15.
The oxidative addition reaction of 4,6-di-tert-butyl-N-(2-hydroxy-3,5-di-tert-butyl-phenyl)-o-iminobenzoquinone (IBQ) to triphenylantimony(III) proceeds with the migration of hydroxyl-proton to a nitrogen atom to form tridentate O,N,O′-coordinated bis-(3,5-di-tert-butyl-phenolate-2-yl)-amine ligand. In accordance with 1H, 13C, DEPT NMR data, the new hexacoordinate complex [bis-(3,5-di-tert-butyl-phenolate-2-yl)-amine]triphenylantimony(V), [(AP-AP)H]SbPh3 (1) in solution has a Cs symmetry plane leading to the equivalence of two O,N-chelate o-aminophenolato moieties. The molecular structure of 1 · acetone was studied by a single-crystal X-ray. Compound 1 was found to be air-stable both in solid and in solution. Its oxidation by PbO2 leads to paramagnetic [4,6-di-tert-butyl-N-(3,5-di-tert-butyl-phenolate-2-yl)-o-iminobenzosemiquinolato]triphenylantimony(V), [(AP-ISQ)]SbPh3 (2).  相似文献   

16.
Two CuII complexes bearing a N-heterocyclic ligand, namely [Cu(SO4)(pbbm)]n (1) and {[Cu(Ac)2(pbbm)] · CH3OH}n (2) (pbbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) have been synthesized with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that new polymeric complex 1 features 1-D double-chain framework. The catalytic studies on 1 and 2 indicate that they are efficient homogeneous catalysts for the oxidative coupling of 2,6-dimethylphenol (DMP) to poly(1,4-phenylene ether) (PPE) and diphenoquinone (DPQ) with H2O2 as oxidant and NaOMe as co-catalyst at room temperature. Optimal reaction conditions are obtained by examining the effects of solvent, the reaction time, temperature as well as the amounts of co-catalyst, catalyst and oxidant. Under the optimal conditions, the selectivity to PPE is almost up to 90% for both complexes, and the conversion of DMP is 85% for 1 and 90% for 2, comparable to those observed for highly active catalyst systems in the literature. Further comparison of their catalytic performances with those of the corresponding copper salt together with organic ligand, copper salt alone and free ligand reveals that the coordination of ligand to CuII ion plays a key role in generating the superior reactivities of complexes.  相似文献   

17.
A series of dioxomolybdenum(VI) complexes with similar hydrazone ligands have been prepared, specifically [MoO2L1(MeOH)] (1), [MoO2L2(MeOH)] (2) and [MoO2L3(MeOH)] (3), where L1, L2 and L3 are the dianionic forms of 2-chloro-N′-(2-hydroxybenzylidene)benzohydrazide, 2-chloro-N′-(2-hydroxy-5-methylbenzylidene)benzohydrazide and N′-(3-bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide, respectively. The complexes were characterized by physicochemical and spectroscopic methods and also by single-crystal X-ray determination. The hydrazone ligands coordinate to the Mo atoms through their phenolate O, imine N and enolic O atoms. The Mo atoms are six-coordinated in octahedral geometries. The complexes show high catalytic activities and selectivities in the epoxidation of cyclohexene with tert-butylhydroperoxide as primary oxidant.  相似文献   

18.
The aerobic oxidation of substituted phenols with the catalytic system M(acac)n/3-methylbutanal/O2 has been investigated. Co(acac)2 and Mn(acac)3 promoted the transformation of 2,6-dimethylphenol and 2,6-di-t-butylphenol into their corresponding diphenoquinones and benzoquinones. In the oxidation of 2,3,6-trimethylphenol, the same catalysts yielded 32–34% of the relevant biphenol. Cu(acac)2 converted 2-naphthol into 1,1′-bi-2-naphthol with 84% yield. Supported Co(II) and Cu(II) complexes have also been used as heterogeneous catalysts for the oxidation of 2,6-di-t-butylphenol and 2-naphthol, respectively.  相似文献   

19.
Two new Schiff base ligands 2-chloro-N′-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (H2La) and 4-fluoro-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenol (HLb) were synthesized and characterized. Their respective oxidovanadium complexes, [VOLa(OMe)(MeOH)]·MeOH (1) and [VO(μ-O)Lb]2 (2), were synthesized and characterized by spectroscopy and single-crystal X-ray diffraction. The coordination sphere of each V atom is octahedral. Both complexes showed selective heterogeneous catalytic properties with 74–98 % conversion, for the oxidation of cyclohexene, cyclopentene, and benzyl alcohol using H2O2 as primary oxidant.  相似文献   

20.
The water-soluble copper complex generated in situ from CuCl2 and 2,2′-biquinoline-4,4′-dicarboxylic acid dipotassium salt (BQC), has been revealed as a highly efficient and selective catalyst for the oxidation of secondary 1-heteroaryl alcohols to the corresponding heteroaromatic ketones with aqueous tert-butyl hydroperoxide, under mild conditions. The catalytic system is compatible with different heterocycles such as pyridines, pyrroles, indoles, thiophens, furans, thiazoles, and imidazoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号