首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
As‐received sepiolite/epoxy systems and Fe3O4‐doped sepiolite/epoxy systems were prepared, and the contents of sepiolite and Fe3O4‐doped sepiolite were kept as 2 and 4 wt%, respectively. Compared with sepiolite, the effect of Fe3O4‐doped sepiolite on the flame retardancy, combustion properties, thermal degradation, thermal degradation kinetics and thermomechanical properties of epoxy resin was investigated systematically by limiting oxygen index (LOI), cone calorimeter (Cone), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Some interesting results had been acquired. The addition of sepiolite decreased heat release rate, total smoke production and smoke production rate, and obviously improved LOI values of epoxy composites. Compared with sepiolite, the addition of Fe3O4‐doped sepiolite further reduced parameters mentioned above of epoxy composites, and further enhanced LOI values and char residues after cone test. There might be a synergistic effect between sepiolite and Fe3O4 on flame retardant epoxy composite. TGA results indicated that the addition of sepiolite had a slight effect on the thermal degradation of epoxy composites; however, the addition of Fe3O4‐doped sepiolite accelerated the thermal degradation of epoxy composites. DMA results showed that the addition of both sepiolite and Fe3O4‐doped sepiolite increased the glass transition temperature (Tg) of epoxy composite. The results obtained in this paper supplied an effective solution for developing excellent flame retardant properties of polymeric materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A novel phosphorus‐containing silicone flame retardant (PDPSI) was prepared by Mannish reaction, and a series of PDPSI/PET composites were prepared by melt blending method. The nuclear magnetic resonance (1H NMR), Fourier transformation infrared (FTIR), and the thermogravimetric analyzer (TGA) results indicated that PDPSI showed network structure and owned good thermal stability, with the char residue of 62.2% at 800°C. The flame retardancy of PDPSI/PET composites was characterized by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter (CCT). The results revealed that the addition amount of PDPSI was 5%, the LOI value of PDPSI/PET composites increased to 27.3%, and UL‐94 test passed V‐0 rating. When the PDPSI loading was 3%, PET composites showed excellent flame retardancy and smoke suppression, with a decrease in the peak heat release rate (PHRR) by 71.19% and the total smoke release (TSP) reduced from 14.4 to 11.1m2. The scanning electron microscopy (SEM) and FTIR results of char residue demonstrated that the flame‐retardant mechanism of PDPSI was solid phase flame retardant. PDPSI catalyzed the aromatization reaction of PET to promote the formation of a dense and continuous carbon layer, finally improving the flame retardancy and smoke suppression properties of PET.  相似文献   

3.
The objective of the study was to investigate the effect of the organo‐modified nanosepiolite (ONSep) on improving the fire safety of polypropylene (PP). The composites based on PP, flame retardant master batch (MB‐FR, 25 wt% PP+50 wt% decabromodiphenyl ether (DBDPE)+25% antimony trioxide (ATO)) and ONSep were prepared via melt blending. The results of the limiting oxygen index (LOI) and vertical burning rating (UL‐94) test indicated that PP/40 wt% MB composites had no rating with seriously dripping phenomenon, while the LOI value was only 22.5. However, as 4 wt% ONSep was added in PP/40 wt% MB composites, the composites achieved UL94 V‐0 rating and the LOI value was 24.3. In comparison, PP/50 wt% MB composites could not reach the V‐0 rating either. The TGA results revealed that the addition of ONSep enhanced the thermal stability of the PP/MB‐FR composites. The cone calorimeter results indicated that the heat release rate, average mass loss rate, smoke production rate and smoke temperature of the PP/40 wt% MB‐FR/4 wt% ONSep composites decreased in comparison with those of PP/40 wt% MB‐FR composites. Simultaneously, the Young modulus and impact strength were also much better improved with the increase of ONSep loading. Therefore, the synergistic flame retardancy of ONSep in PP/MB‐FR matrix significantly containing a halogen based flame retardant (DBDPE) significantly improved the fire safety and mechanical properties of the composites, and allowed to decrease the total amount of brominated fire retardants.  相似文献   

4.
利用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和马来酸酐(MA)对淀粉进行改性得到磷化淀粉(DOPOMASt),通过红外光谱(FTIR)、核磁共振谱(1H-NMR)和X射线光电子能谱(XPS)确定其结构.利用DOPOMASt作为碳源,与聚磷酸铵(APP)复配后通过熔融共混制备了阻燃聚乳酸(PLA)...  相似文献   

5.
Effect of metallic oxides on flame retardancy and the thermal stability of styrene butadiene rubber (SBR) composites based on ammonium polyphosphate (APP) and pentaerythritol (PER) was studied by the limiting oxygen index (LOI), UL 94, the cone calorimeter tests, and thermogravimetry analysis (TGA), respectively. Scanning electron microscopy (SEM) and wide‐angle X‐ray diffraction (WAXD) were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly. The addition of zirconium dioxide (ZrO2) at a loading of 3.4 phr could improve the UL 94 test rating of the composite to V‐0. The TGA data illustrated that the metallic oxides could enhance the thermal stability of the SBR/Intumescent flame retardant additives (IFRs) composites at high temperature and increase the residue. Cone calorimeter test gave much clear evidence that the incorporation of ZrO2 into SBR/IFRs composites resulted in the significant deduction of the heat release rate (HRR) values, and the SEM images showed that the char layers of the composites containing the metallic oxides became more compact. From the WAXD pattern, zirconium phosphate (ZrP2O7) may be formed by the reaction between ZrO2 and APP. Due to the addition of ZrO2 and the formation of ZrP2O7, the flame retardancy of the composite was improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In order to improve the flame retardant of polylactide (PLA), the synergistic effect of graphitic carbon nitride (g‐C3N4) with commercial‐available flame retardants melamine pyrophosphate (MPP) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was investigated. The PLA composites containing 5 wt% g‐C3N4 and 10 wt% DOPO had a highest limited oxygen index (LOI) value of 29.5% and reached the V‐0 rating of UL‐94 test. The cone calorimeter tests exhibited that DOPO had a better synergistic effect with g‐C3N4 than MPP to improve flame retardancy of PLA. The peak heat release rate (pHRR) and total heat release (THR) of PLA composites containing 10 wt% DOPO could be reduced by 25.2% and 23.6%, respectively, as compared with those of pure PLA. The presence of rich phosphorus element and aromatic groups in DOPO contributed to obtain continuous compact char layer and increase the graphitization level of char residues, thereby, resulting in improving the flame retardancy of PLA together with g‐C3N4. In addition, the incorporation of DOPO can serve as a plasticizer to reduce the complex viscosity, improving the processability of PLA composites.  相似文献   

7.
Compared with poly(butylene terephthalate) (PBT), glass-fibre-reinforced poly(butylene terephthalate) (GF-PBT) is difficult to flame retard with halogen-free flame retardants. In the present study, the aluminium salt of hypophosphorous acid (AP) was used as a flame retardant for GF-PBT. A series of flame-retardant GF-PBT composites was prepared via melt compounding. The flame retardance and combustion behaviour of the composites were studied by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimetric test. Thermal behaviours and thermal decomposition kinetics were investigated by thermogravimetric analysis (TGA) under N2 atmosphere. The addition of AP to the composites could result in an increased LOI value, a UL-94 V-0 (1.6 mm) classification and a better fire performance in cone calorimetric tests. The char morphology observation after flame-retardant tests, calculation of decomposition kinetics, X-ray photoelectron spectroscopy (XPS) and infra-red spectral analysis of the char residue confirmed the condensed-phase flame-retardant mechanism. Furthermore, the mechanical properties of the flame-retardant composites were not deteriorated, retaining an acceptable level.  相似文献   

8.
The effects of lanthanum oxide (La2O3) as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the new IFR system mainly consisted of the charring-foaming agent (CFA) and ammonium polyphosphate (APP). The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), cone calorimeter (CONE) and scanning electron microscopy (SEM) were used to evaluate the synergistic effects of La2O3. It was found that when IFR was fixed at 20 wt% in IFR-PP composites, only a little amount of La2O3 could enhance LOI value and pass the UL-94 V0 rating test (1.6 mm). The TGA data showed that La2O3 could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that La2O3 and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), ignition time (IT) and so on. The morphological structures observed by SEM demonstrated that La2O3 could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of La2O3 plays a synergistic effect in the flame retardancy and smoke suppression of IFR composites.  相似文献   

9.
Zhou  Shaojie  Li  Shanshan  Cao  Xuesong  Qian  Yi  Li  Long  Chen  Xilei 《Journal of Thermal Analysis and Calorimetry》2019,136(3):1135-1145

CaCO3-containing oil sludge (OS) is a by-product from petroleum industry, with great amount of production. Therefore, an effective processing methods for CaCO3-containing OS is urgently needed. Herein, ethylene-vinyl acetate (EVA) composites based on CaCO3-containing OS and carbon black (CB) were prepared by melt blending method. The combustion behavior and thermal stability of flame-retardant EVA/OS/CB composites were investigated by cone calorimeter test, limiting oxygen index (LOI), scanning electron microscopy (SEM), smoke density test (SDT), and thermogravimetry-Fourier infrared spectrometry. The heat release rate and smoke production rate of the ternary composites containing 3% CB significantly decreased compared with the EVA/OS composites and pure EVA. Moreover, addition of a certain amount of CB could evidently increase LOI values. The morphologies and structures of the residues, revealed by SEM, ascertained that a better carbonaceous protective layer was formed on the ternary composites than the EVA/OS composite. It was obtained from SDT that CB in the material could retard the smoke production with the application of the pilot flame. The EVA/OS/CB composites assumed a higher thermal stability than the EVA/OS composites and pure EVA.

  相似文献   

10.
A novel inorganic and organic composite flame retardant (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide [DOPO]–layered double hydroxide [LDH]) was synthesized via grafting DOPO with organic‐modified Mg/Al‐LDH, which was introduced into poly (methyl methacrylate) (PMMA) resin to prepare the flame‐retardant PMMA composites. Thermogravimetric analyzer (TGA) showed that the T‐50% of DOPO‐LDH/PMMA composites enhanced by about 20°C, and with the 20% flame retardant, the residual char content can be increased by 39.8% in the air atmosphere compared with LDH/PMMA composites. In the UL‐94 and the limiting oxygen index (LOI) tests, it can be found that compared with LDH/PMMA composites, the LOI value of DOPO‐LDH/PMMA composites were raised evidently with the increased flame retardants, and the droplet combustion was greatly improved. These results could be ascribed to the action of DOPO free‐radical, catalytic charring of polymer and the effect of LDH physical barrier. Moreover, the novel DOPO‐LDH not only given PMMA a good flame‐retardant property and thermal stability, but also have higher visible light transmittance, ultraviolet‐shielding effect, and low loss of mechanical properties, which could further facilitate the wide application of inorganic environment‐friendly flame retardants in general resins and engineering resins and broaden the application of polymers.  相似文献   

11.
Nano-Mg(OH)2 (nanometre magnesium hydroxide, nano-MH) was successfully introduced into the esterification and polycondensation system by in situ polymerization to obtain PET/magnesium salt composites (PETMS). The thermal properties and flame retardancy of PETMS were investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), UL-94 vertical burning and limited oxygen index (LOI) test. The DSC and TGA results show that magnesium salts in the PET matrix have little effect on the thermal properties of PET, but a significant effect on the thermal stabilities of the composites. The results of LOI and UL-94 test show PETMS have higher LOI values (≥25%) and V-0 rating without melt dripping in the UL-94 test, indicating that PETMS have good flame retardancy and anti-dripping property. Moreover, the residues of magnesium salts and composites after TGA test were also studied by Fourier transform infrared spectroscopy (FTIR) to better understand the mechanism of flame retardancy, which reveals that magnesium salts accelerate the degradation of PET and catalyze the formation of char. The SEM results show the morphological structures of the char effectively protect the composites’ internal structures and inhibit the heat, smoke transmission and reduce the fuel gases when the fire contacts them.  相似文献   

12.
A novel curing and flame‐retardant agent (PEPA‐TMAC) was successfully synthesized. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Use of PEPA‐TMAC as part of the curing agent in combination with another anhydride for a commercial epoxy resin (EP) was studied. Results of differential scanning calorimetry (DSC) indicated that PEPA‐TMAC was an effective curing agent for EP. The dynamic mechanical analysis (DMA) results showed that the glass transition temperature (Tg) and cross‐linking density (Ve) of EP composites exhibited an increase trend with the addition of PEPA‐TMAC. The limiting oxygen index (LOI) value of EP composites reached 26.9%, and the cone calorimeter results indicated that peak heat release rate (PHRR), total heat release (THR), smoke produce rate (SPR), and total smoke produce (TSP) remarkably decreased with increasing PEPA‐TMAC content. TGA data showed that the addition of PEPA‐TMAC greatly increased the amount of residual char during combustion. The morphology of the residual char was studied by SEM and showed that the addition of PEPA‐TMAC greatly increased the stability of EP composites. The thermogravimetric analysis (TGA), energy‐dispersive X‐ray spectroscopy (EDS), and FTIR results revealed the flame‐retardant mechanism that PEPA‐TMAC can promote the formation of charred layers with the phospho‐carbonaceous complexes in the condensed phase during burning of EP composites.  相似文献   

13.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   

14.
Two novel, halogen-free, phosphorus-based oligomeric flame retardants are investigated in the commercial epoxy resin RTM6 and ∼70 wt.% carbon fibre RTM6 composites (RTM6-CF) with respect to pyrolysis and fire behaviour. The flame retardants are based on 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide (DOPO) units linked to the star-shaped aliphatic ground body tetra-[(acryloyloxy)ethyl] pentarythrit (DOPP), or heterocyclic tris-[(acryloyloxy)ethyl] isocyanurate (DOPI), respectively. The glass transition temperature is reduced by adding DOPP and DOPI, but the mechanical properties of the composites (e.g. interlaminar shear strength (ILSS) and Gc in mode I and II) remain unchanged. Decomposition models are proposed based on mass loss, evolved gas analysis (TG–FTIR) and condensed product analysis (hot stage cell within FTIR). The fire behaviour is investigated comprehensively (UL 94, limiting oxygen index (LOI) and cone calorimeter). Both flame retardants act in the gas phase through flame inhibition and in the condensed phase through charring. The UL 94 of RTM6 is improved from HB to V-1 and V-0; the LOI from 25% to 34–38%. Peak heat release rate (PHRR) and total heat evolved (THE) are lowered by 31-49% and 40–44%, respectively. Adding CF increases the residue, reduces the THE, but suppresses the charring due to RTM6 and flame retardants. Thus the THE of RTM6-CF is reduced by about 25% when DOPI and DOPP are added. However, UL 94: V-0 and LOI of 45% and 48% are achieved with ∼0.6 wt.% phosphorus.  相似文献   

15.
In this paper, an effective flame retardant consisting of hierarchical magnesium hydrate (MH) nanosheets doped with molybdenum trioxide nanoparticles (MO@MH) was successfully synthesized via a hydrothermal process. Then, MO@MH, MH, and MH/MO were respectively incorporated into flexible polyvinyl chloride (fPVC) to prepare a series of composites via melt blending. The results of limiting oxygen index (LOI), UL‐94, and cone calorimetry test showed that MO@MH exhibited better flame retardancy and smoke suppression than MH and MH/MO due to the synergistic effect of MO and MH, and the hierarchical structure of MO@MH. With the addition of 20 phr MO@MH, LOI value of fPVC was increased from 23.9% to 33.8% , and UL‐94 reached V0 rating. The peak heat release rate, total heat release, peak smoke production rate, and total smoke production were decreased to 143.0 kW/m2, 44.9 MJ/m2, 0.0093 m2/s and 29.4 m2, respectively. The thermogravimetric analysis results suggested that MO@MH greatly promoted the dehydrochlorination of fPVC at lower temperature, so that more compact and continuous char residues were formed. The Fourier transform infrared spectroscopy results indicated that MO@MH can prevent chain scission and oxidation of fPVC carbonaceous backbone, and as a result less smoke was released.  相似文献   

16.
To develop environmental‐friendly and flame‐retarded polymer composites, bio‐based polylactic acid (PLA) was loaded with thermally stable polyhedral octaphenyl silsesquioxane (OPS). Pure PLA and PLA/OPS composites with the OPS of 1, 3, 5, and 10 wt% were prepared by extrusion and injection molding, respectively. The scanning electron microscopy (SEM), polarized optical microscope (POM), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and thermal gravimetric analysis (TGA) were used to analyze the dispersion of the OPS in the PLA matrix and the effects of OPS on the crystallization and thermal stability properties of PLA/OPS composites, respectively. Limited oxygen index (LOI) and cone calorimeter (CONE) measurements were used to study flame retardancy of PLA and PLA/OPS composites. In order to study the flame‐retardant mechanism, the char residues were investigated by SEM, Fourier transform infrared spectra (FTIR), and X‐ray photoelectron spectroscopy (XPS). TGA‐FTIR was used to analyze the gaseous products of their thermal decomposition. The results show that the OPS particles were submicron in the PLA and could increase the crystallization rate of PLA and form small‐sized secondary α‐form crystalline compared with the pure PLA spherulite. The PLA and OPS decomposed individually in the PLA/OPS composites by TGA. According to the LOI tests, the PLA with the OPS loading exhibited very small reduction of LOI. However, the CONE tests indicated that the OPS could improve the flame retardancy of the PLA by means of low peak heat release rate and average heat release rate. It was obtained that the degree and type of the PLA crystalline for the pure PLA and PLA/OPS affect their flame retardancy. In the max thermal decomposition stage of PLA and PLA/OPS, their gaseous products were similar; at high temperatures, the PLA/OPS produced simple and clear gaseous products of PLA with solid SiO2 in the gas phase.  相似文献   

17.

The objective of the present article was to study the thermal degradation behavior and flame retardancy of flexible polyvinyl chloride (PVC) composites containing TiO2/SO 2?4 solid superacid because of its strong catalytic ability for esterification and dehydration. The TiO2/SO 2?4 solid superacid was synthesized by using precipitation immersion method, and its structure was investigated by X-ray diffraction. As expected, the value of limiting oxygen index for PVC/Sb2O3/(TiO2/SO 2?4 ) composite was 32.5% and the char yield of PVC/Sb2O3/(TiO2/SO 2?4 ) composite was significantly improved compared to neat PVC in thermogravimetry tests. In addition, the peak heat release rate and smoke production rate of PVC/Sb2O3/(TiO2/SO 2?4 ) decreased by 14% and 42%, respectively, compared with neat PVC. Moreover, the results of cone calorimetry tests and electron micrograph of char residue showed that the char yield of TiO2/SO 2?4 was enhanced, resulting in a strong char layer structure with outstanding fire retardance cone. In conclusion, the results of this work showed that the addition of solid superacid promoted the decomposition and dehydration of PVC, which formed a compact and continuous char layer on the surface of the material. Hence, the study provides a new perspective for producing composites with excellent flame retardancy and smoke suppression properties of PVC.

  相似文献   

18.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A series of flame-retardant ethylene–vinyl acetate (EVA) composites with different contents of aluminum phosphate (AHP) and Trimer were prepared. The synergistic flame-retardant effects of the Trimer with AHP in EVA/AHP blends were studied by limiting oxygen index (LOI) tests, UL-94 tests, cone calorimeter tests, thermogravimetric analysis, and scanning electron microscopy (SEM). The LOI and UL-94 results showed that the system containing AHP and Trimer was very effective in improving the flame retardancy of EVA. When the mass ratio of AHP and Trimer was 3:1, the highest flame retardancy could be obtained, and when the flame-retardant loading was 30 wt%, the EVA/AHP/Trimer (7.5%) sample could achieve the V-0 rating in UL-94 tests, at the same time, its LOI value was 24.4%. The TG and DTG results showed that the addition of flame retardants catalyzes EVA decomposition in the first stage and generates a more stable char residue in the second stage. Consequently, an efficient reduction in the flammability parameters, such as heat release rate, total heat release, smoke production rate, and total smoke production could be observed. In addition, it was observed from the SEM observations of the morphological features that the AHP and Trimer combination, at the optimum proportion, could promote the formation of compact charred layers and prevent their cracking, which effectively protected the underlying materials from burning.  相似文献   

20.

The flammability and the thermal oxidative degradation kinetics of expandable graphite (EG) with magnesium hydroxide (MH) in flame‐retardant polypropylene (PP) composites were studied by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results show that EG is a good synergist for improving the flame retardancy of PP/MH composite and the effect is enhanced with decreasing EG particle size. The Kissinger method and Flynn‐Wall‐Ozawa method were used to determine the apparent activation energy (E) for degradation of PP and flame retarded PP composites. The data obtained from the TGA curve indicate that EG markedly increases the thermal degradation temperature of PP/MH composites and improves the thermal stability of the composites. The kinetic results show that the values of E for degradation of flame retarded PP composites is much higher than that of neat PP, especially PP/MH composites with suitable amount of EG, which indicates that the flame retardants used in this work have a great effect on the mechanisms of pyrolysis and combustion of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号