首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2‐(Dinitromethylene)‐1,3‐diazacycloheptane (DNDH) was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,4‐diaminoethane in NMP. Thermal decomposition behavior of DNDH was studied under the non‐isothermal conditions with DSC method, and presents only one intensely exothermic decomposition process. The kinetic equation of the decomposition reaction is dα/dT=1033.88×3α2/3exp(−3.353×105/RT)/β. The critical temperature of thermal explosion is 215.97°C. Specific heat capacity of DNDH was studied with micro‐DSC method and theoretical calculation method, and the molar heat capacity is 215.40 J·mol−1·K−1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be 92.07 s. DNDH has same thermal stability to FOX‐7.  相似文献   

2.
乙酰氧肟酸的热稳定性分析   总被引:1,自引:0,他引:1  
焦爱红  傅智敏 《化学学报》2008,66(10):1281-1285
为预防化工生产、储运和使用中由乙酰氧肟酸(Acetohydroxamic acid, AHA)引发的火灾和爆炸事故, 采用绝热量热法对其热稳定性进行实验研究, 并将加速量热仪(Accelerating Rate Calorimeter, ARC)的测试结果与差示扫描量热仪(Differential Scanning Calorimetry, DSC)的结果进行了比较. ARC绝热测试结果表明, AHA的初始放热温度为352.68 K, 最高放热温度为465.82 K, 最大温升速率和最大温升速率时间分别为8.748 K•min-1和382.65 min, 单位质量AHA生成气体的最大压力为2.22 MPa•g-1. 根据ARC绝热测试结果, 采用速率常数法计算了AHA的动力学参数表观活化能和指前因子, 并求出了AHA的某种典型包装的不可逆温度和自加速反应温度. 研究结果表明, AHA的热稳定性较差, 爆炸性较强.  相似文献   

3.
4-Amino-3-furazanecarboxamidoxime (AAOF) is an important precursor for synthesizing new furazano (furoxano) energetic compounds. Its thermal behaviour was studied under a non-isothermal condition by DSC methods. The results of this study show that there are one melting process and two exothermic decomposition processes. Its kinetic parameters of the intense exothermic decomposition process are obtained from analysis of the DSC curves. The apparent activation energy (Ea), pre-exponential factor (A) and the mechanism function (f(α)) were (146 ± 18) kJ · mol−1, (1010.9±1.8) s−1 and (1  α)2, respectively. The specific molar heat capacity (Cp,m) of AAOF was determined by a continuous Cp mode of micro-calorimeter. The self-accelerating decomposition temperature (TSADT), thermal ignition temperature (TTIT) and critical temperatures of thermal explosion (Tb) were obtained to evaluate its thermal safety.  相似文献   

4.
In this paper, the thermal behaviours of two organophosphorous compounds, N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic (NDD) and diphenyl amidophosphate (DPA), were studied by thermogravimetery (TG), differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques under non-isothermal conditions. The results showed that NDD melts about 185 °C before it decomposes. NDD decomposition occurs in two continuous steps, in the 190–410 °C temperature range. First thermal degradation stage for NDD results a broad exothermic peak in the DTA curve that is continued with a small exothermic peak at the end of decomposition process. On the other hand, applying TG-DTA techniques indicates that DPA melts about 150 °C before it decomposes. This compound decomposes in the temperature range of 230 to 330 °C in two steps. These steps are endothermic and exothermic, respectively. Activation energy and pre-exponential factor for the first step of decomposition of each compound were found by means of Kissinger method and were verified by Ozawa–Flynn–Wall method. Activation energy obtained by Kissinger method for the first stage of NDD and DPA decompositions are 138 and 170 KJ mol−1, respectively. Finally, the thermodynamic parameters (ΔG #, ΔH # and ΔS #) for first step decomposition of investigated organophosphorous were determined.  相似文献   

5.
Organic peroxides have caused many serious explosions and fires that were promoted by thermal instability, chemical pollutants, and even mechanical shock. Cumene hydroperoxide (CHP) has been employed in polymerization and for producing phenol and dicumyl peroxide (DCPO). Differential scanning calorimetry (DSC) has been used to assess the thermal hazards associated with CHP contacting sodium hydroxide (NaOH). Thermokinetic parameters, such as exothermic onset temperature (T 0), peak temperature (T max), and enthalpy (ΔH) were obtained. Experimental data were obtained using DSC and curve fitting using thermal safety software (TSS) was employed to obtain the kinetic parameters. Isothermal microcalorimetry (thermal activity monitor, TAM) was used to investigate the thermal hazards associated with storing of CHP and CHP mixed with NaOH under isothermal conditions. TAM showed that in the temperature range from 70 to 90°C an autocatalytic reaction occurs. This was apparent in the thermal curves. Depending on the operating conditions, NaOH may be one of the chemicals or catalysts incompatible with CHP. When CHP was mixed with NaOH, the T 0 is lower and reactions become more complex than those associated with assessment of the decomposition of the pure peroxide. The data by curve fitting indicated that the activation energy (E a) for the induced decomposition is smaller than that for decomposition of CHP in the absence of hydroxide.  相似文献   

6.
Over 90% of the cumene hydroperoxide (CHP) produced in the world is applied in the production of phenol and acetone. The additional applications were used as a catalyst, a curing agent, and as an initiator for polymerization. Many previous studies from open literature have verified and employed various aspects of the thermal decomposition and thermokinetics of CHP reactions. An isothermal microcalorimeter (thermal activity monitor III, TAM III), and a thermal dynamic calorimetry (differential scanning calorimetry, DSC) were used to resolve the exothermic behaviors, such as exothermic onset temperature (T 0), heat power, heat of decomposition (ΔH d), self-heating rate, peak temperature of reaction system, time to maximum rate (TMR), etc. Furthermore, Fourier transform infrared (FT-IR) spectrometry was used to analyze the CHP products with its derivatives at 150 °C. This study will assess and validate the thermal hazards of CHP and incompatible reactions of CHP mixed with its derivatives, such as acetonphenone (AP), and dimethylphenyl carbinol (DMPC), that are essential to process safety design.  相似文献   

7.
罗阳  陈沛  赵凤起  胡荣祖  李上文  高茵 《中国化学》2004,22(11):1219-1224
Introduction 3,3-Bis(azidomethyl)oxetane/tetrahydrofuran (BAM- O/THF, marked as B/T) copolymer can be used as an azide binder of high energy propellants with the lower signature, and lower sensitivity to improve the me-chanical properties at lower temperature and the burning rate characteristics. Its decomposition kinetics and the effects of THF on the decomposition kinetics of BAMO copolymers have been reported.1,2 In the present work, we report the kinetic model function and kinetic pa…  相似文献   

8.
Large anisotropic deformation affects the physical state of a polymer glass, where the changes in the state of material are revealed by performing a differential scanning calorimetry (DSC) experiment. Previously, the deformation was applied to polymers well below their glass transition temperatures, and it was found that uniaxial compressive loading–unloading resulted in a broad exothermic peak on the DSC trace. Here we report on the effect on the subsequent DSC response of a deformation experiment performed in uniaxial extension on a ductile 50:50 co-polymer poly(BMA-co-MMA) (PBMA/MMA). The deformation of up to 80% strain was applied at Tg − 30°C and Tg − 40°C, that is, closer to Tg than in the previous work. Unlike in the well below Tg deformation case, the DSC trace contains an endothermic peak followed by an exothermic peak. The magnitude of the endothermic peak as well as the asymptotic glassy heat capacity increase with the amount of mechanical work performed during the deformation cycle.  相似文献   

9.
This study focuses on the thermal and mechanical properties of 1,2-polybutadiene and 3,4-polyisoprene with an inorganic salt, bis(acetonitrile)dichloropalladium (II). Upon mixing in THF, effective crosslinks are formed because the acetonitrile ligands of the palladium salt are displaced by olefinic pendant groups of the polymers. Using a simple nth-order irreversible kinetic rate model, the palladium-catalyzed Heck-like exothermic reaction in solid films was characterized via isothermal and nonisothermal DSC. Thermal energy and mass balances appropriate to a batch reactor are developed from first principles and applied to the isothermal DSC output curve to calculate the time dependence of reactant conversion. Relevant kinetic parameters, such as the order of the reaction, the characteristic time constant for the chemical reaction, and the activation energy, have been determined. The kinetic data suggest that the palladium-catalyzed crosslinking reactions are diffusion controlled in the solid state because the reaction order is very close to unity. Higher glass transition temperatures (Tg) are measured by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) when (i) palladium concentration, (ii) annealing (heat treatment) time, and (iii) annealing temperature increase. After 2 h of annealing at 80°C, which corresponds to a temperature below the first exothermic crosslinking reaction (≅ 115°C) during nonisothermal DSC kinetic studies, rubbery materials containing very low concentrations of PdCl2 (i.e., 0.5 mol %) exhibit reinforced ductile stress-strain response. When annealing is performed at the peak temperature of the first exothermic event, the rubbery materials are transformed into glasses. Transition-metal compatibilization of atactic 1,2-polybutadiene and 3,4-polyisoprene via PdCl2 is demonstrated by monitoring the glass transition obtained from dynamic mechanical tan δ profiles. The effect of annealing this ternary reactive “blend” produces a glassy material exhibiting an elevated Tg and synergistic mechanical properties. © 1996 John Wiley & Sons, Inc.  相似文献   

10.

Isothermal and dynamic differential scanning calorimetry (DSC) was exploited to study the curing behavior of diglycidyl ether bisphenol-A epoxy resin with various combining ratios of dicyandiamide (DICY) and nadic methyl anhydride (NMA). Curves of prepared samples indicated that the enthalpy of the reaction decreased with increasing the molar ratios (NMA/DICY) up to 40% after which an exothermic peak peculiar to the effect of anhydride appeared at a higher temperature. The curing behavior examination of the samples containing the aforementioned molar ratio of NMA/DICY (= 40%) was carried out using isothermal condition at different temperatures (130–145 °C) and dynamic condition DSC at various heating rates (2.5–20 °C min−1). Under the isothermal condition, by constructing a master curve, the values of activation energy (Ea) and pre-exponential factor (A) were calculated 89.3 kJ mol−1 and 1.2 × 10+9 s−1, respectively. The activation energy of the curing reactions in a dynamic mode was obtained 85.32 kJ mol−1 and 88.02 kJ mol−1 using Kissinger and Ozawa methods, respectively. Likewise, pre-exponential factors were also calculated 3.35 × 10+8 and 7.4 × 10 +8 s−1, respectively. The overall order of reaction for both conditions was found to be a value around 3.

  相似文献   

11.
The kinetic parameters of the exothermic decomposition of the title compound in a temperatureprogrammed mode have been studied by means of DSC. The DSC data obtained are fitted to the integral, differential, and exothermic rate equations by the linear least-squares, iterative, combined dichotomous, and least-squares methods, respectively. After establishing the most probable general expression of differential and integral mechanism functions by the logical choice method, the corresponding values of the apparent activation energy (E a), preexponential factor (A), and reaction order (n) are obtained by the exothermic rate equation. The results show that the empirical kinetic model function in differential form and the values of E a and A of this reaction are (1 − α)−4.08, 149.95 kJ mol−1, and 1014.06 s−1, respectively. With the help of the heating rate and kinetic parameters obtained, the kinetic equation of the exothermic decomposition of the title compound is proposed. The critical temperature of thermal explosion of the compound is 155.71°C. The above-mentioned kinetic parameters are quite useful for analyzing and evaluating the stability and thermal explosion rule of the title compound. The text was submitted by the authors in English.  相似文献   

12.
Non-isothermal techniques, i.e. thermogravimetry (TG) and differential scanning calorimetry (DSC), have been applied to investigate the thermal behaviour of carbaryl (1-naphthyl-N-methylcarbamate = 1-Naph-N-Mecbm) and its complexes, M(1-Naph-N-Mecbm)4X2, where M = Cu, X = Cl, NO3 and CH3COO and M = Zn, X = Cl. Carbaryl and Zn(1-Naph-N-Mecbm)4Cl2 complex exhibit two-stage thermal decomposition while the copper(II) complexes exhibit three and four-stage decomposition in their TG curves. The nature of the metal ion has been found to play highly influential role on the nature of thermal decomposition products as well as energy of activation ‘E*’. The presence of different anions does not seem to alter the thermal decomposition patterns. The complexes display weak to medium intensity exothermic and endothermic DSC curves, while the free ligand exhibits two endothermic peaks. The kinetic and thermodynamic parameters namely, the energy of activation ‘E*’, the frequency factor ‘A’ and the entropy of activation ‘S*’ etc. have been rationalized in relation to the bonding aspect of the carbaryl ligand. The nature and chemical composition of the residues of the decomposition steps have been studied by elemental analysis and FTIR data.  相似文献   

13.
The exothermic decomposition of cumene hydroperoxide (CHP) in cumene liquid was characterized by isothermal microcalorimetry, involving the thermal activity monitor (TAM). Unlike the exothermic behaviors previously determined from an adiabatic calorimeter, such as the vent sizing package 2 (VSP2), or differential scanning calorimetry (DSC), thermal curves revealed that CHP undergoes an autocatalytic decomposition detectable between 75 and 90°C. Previous studies have shown that the CHP in a temperature range higher than 100°C conformed to an n th order reaction rate model. CHP heat of decomposition and autocatalytic kinetics behavior were measured and compared with previous reports, and the methodology and the advantages of using the TAM to obtain an autocatalytic model by curve fitting are reported. With various autocatalytic models, such as the Prout-Tompkins equation and the Avrami-Erofeev rate law, the best curve fit among models was also investigated and proposed.  相似文献   

14.
Using two techniques of thermogravimetry and differential scanning calorimetry under O2 gas atmosphere from 25 to 600°C, the thermal behavior of laboratory-produced compound lead(IV) oxide α-PbO2 was investigated. The identity of products at different stages were confirmed by XRD technique. Both techniques produced similar results supporting the same decomposition stages for the compound. Three distinct energy changes were observed, namely, two endothermic and one exothermic in DSC. The amount of ΔH for each peak is also reported.  相似文献   

15.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

16.
The high potential for intercalations by water and various guest molecules is induced by the exchangeable cation inside Ca2+–Montmorillonite gallery. XRD peak for Mon at 2θ = 6.04° (d 001 = 1.462 nm) shows the structural effect on the clay gallery influenced by the intercalated water layers. Further increases in the gallery height are observed with the intercalation of octadecyl ammonium cations in OMON (d 001 = 1.840 nm) and ENR-50 matrix chains in CENR-50 (d 001 = 1.954 nm). DSC studies on the other hand reveal the thermal behaviors of intercalated molecules that are linked to the exchangeable cations. The endothermic of Ca2+–Montmorillonite (H Mon = 356.3 J/g) in low temperature range (30–100 °C) indicates the removal of free water and hydrogen bonded water molecules, while the endothermic around 150 °C is related to the induced skeletal layer of water within Ca2+–Montmorillonite. The OMON endothermic (H OMON = 47.0 J/g, T m = 36.94 °C) tells that cation exchange had modified the water structures and content inside the renewed clay. The intercalation of ENR-50 chains into OMON gallery reveals two endothermic with the T m1 and T m2 are at 86.24 and 113.80 °C, respectively. These T ms confirm that the alkyl chain segment on octadecyl ammonium cation occupy the OMON interlayer space.  相似文献   

17.
Dicumyl peroxide (DCPO) is usually employed as an initiator for polymerization, a source of free radicals, a hardener, and a linking agent. In Asia, due to its unstable reactive nature, DCPO has caused many thermal explosions and runaway reaction incidents in the manufacturing process. This study was conducted to elucidate its essentially thermal hazard characteristics. In order to analyze the runaway behavior of DCPO in a batch reactor, thermokinetic parameters, such as heat of decomposition (ΔH d) and exothermic onset temperature (T 0), were measured via differential scanning calorimetry (DSC). Thermal runaway phenomena were then thoroughly investigated by DSC. The thermokinetics of DCPO mixed with acids or bases were determined by DSC, and the experimental data were compared with kinetics-based curve fitting of thermal safety software (TSS). Solid thermal explosion (STE) and liquid thermal explosion (LTE) simulations of TSS were applied to determine the fundamental thermal explosion behavior in large tanks or drums. Results from curve fitting indicated that all of the acids or bases could induce exothermic reactions at even an earlier stage of the experiments. In order to diminish the extent of hazard, hazard information must be provided to the manufacturing process. Thermal hazard of DCPO mixed with nitric acid (HNO3) was more dangerous than with other acids including sulfuric acid (H2SO4), phosphoric acid (H3PO4), and hydrochloric acid (HCl). By DSC, T 0, heat of decomposition (ΔH d), and activation energy (E a) of DCPO mixed with HNO3 were calculated to be 70 °C, 911 J g−1, and 33 kJ mol−1, respectively.  相似文献   

18.
In Japan, tert-butyl mercaptan (TBM) is mainly employed as an odorant of LPG. However, the sulfur component in TBM gives the adverse effect for environment and human body and/or has a negative impact on reforming catalyst of fuel cell and other types of cogeneration systems. In this way, the development of sulfur-free odorant is expected. This study focuses on the thermal stability and combustibility of 2-hexyne, 1-pentyne, n-butyl isocyanide (BIC), and ethyl isocyanide (EIC) that is expected as the candidate odorants. As the result of DSC measurement, the comparison of T DSC indicated that 2-hexyne and 1-pentyne are more thermally stable than BIC and EIC. However, in 2-hexyne and 1-pentyne, the slight exothermic peaks were observed at lower temperature region before those main exothermic peaks. In 2-hexyne, copper or aluminum increased the heat amount of that slight exothermic peak observed before main peak. In 1-pentyne with zinc, T DSC was approximately decreased to 279 °C from 337 °C of 1-pentyne alone. As the results of ARC measurement, in the presence of oxygen, the exothermic heat of 2-hexyne and 1-pentyne was observed at approximately 50–100 °C. This heat release may be corresponding to the slight heat release observed by DSC, and it thought to be results from the reaction with atmospheric oxygen. In this way, for the practical application of 2-hexyne and 1-pentyne as odorants, it is important to suppress the invasion of oxygen in the cylinder to low as much as possible in respect of the storage of the candidate odorant. As a result of thermal equilibrium calculation, even if either candidate odorant is added at about 100 ppm, there is little influence on propane combustibility from the adiabatic flame temperature, species of combustion gas and their yields.  相似文献   

19.
3,3-Dinitroazetidinium (DNAZ) salt of perchloric acid (DNAZ·HClO4) was prepared, it was characterized by the elemental analysis, IR, NMR, and a X-ray diffractometer. The thermal behavior and decomposition reaction kinetics of DNAZ·HClO4 were investigated under a non-isothermal condition by DSC and TG/DTG techniques. The results show that the thermal decomposition process of DNAZ·HClO4 has two mass loss stages. The kinetic model function in differential form, the value of apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of DNAZ·HClO4 are f(α) = (1 − α)−1/2, 156.47 kJ mol−1, and 1015.12 s−1, respectively. The critical temperature of thermal explosion is 188.5 °C. The values of ΔS , ΔH , and ΔG of this reaction are 42.26 J mol−1 K−1, 154.44 kJ mol−1, and 135.42 kJ mol−1, respectively. The specific heat capacity of DNAZ·HClO4 was determined with a continuous C p mode of microcalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was evaluated as 14.2 s.  相似文献   

20.
Summary Cholesterol constitutes the major component of most gallstones. It was identified and determined in gallstones by thermal analysis technique (DSC and TG-DTA), mainly by the use of the melting temperature (Tonset=145°C and Tmax=149°C) and by DTG peak decomposition (Tmax=364°C). Cholesterol anhydrous (ChA), which showed endothermic polymorphic peak, Tmax=40°C, without mass loss, was differentiated from cholesterol monohydrate (ChH), which showed a broad endothermic peak, Tmax=59°C, attributed to loss of water of crystallization (theoretical 4.45%). Morphological studies of gallstones were performed by optical microscopy and scanning electron microscopy (SEM). The stones consisted of a pigmented core with a variably-sized irregular central cavity, surrounded by a radially arranged deposits of plate-like ChH. The outer part of the stones showed ChA crystal arborescences. X-ray microanalysis gave a typical spectrum rich in C and O, and in some instances the presence of P, which was attributed to the presence of phospholipids. CaCO3 was easily characterized by TG with the use of DTG decomposition peak at 674°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号