首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the optimization of solid-phase microextraction (SPME) conditions for three different fibres (Carboxen-polydimethylsiloxane (CAR-PDMS), divinylbenzene-Carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and polydimethylsiloxane-divinylbenzene (PDMS-DVB)) used to determine trihalomethanes (THMs) in water by headspace solid-phase microextraction and gas chromatography (HS-SPME-GC). The influence of temperature and salting-out effect was examined using a central composite design for each fibre. Extraction time was studied separately at the optimum values found for temperature and sodium chloride concentration (40 degrees C and 0.36g mL-1). The HS-SPME-GC-MS method for each fibre was characterised in terms of linearity, detection (LOD) and quantification (LOQ) limits and repeatability. The fibre PDMS-DVB was selected as it provided a broader linear range, better repeatability and lower detection and quantification limits than the others, particularly CAR-PDMS fibre. The accuracy of the proposed method using the PDMS-DVB fibre was checked by a recovery study in both ultrapure and tap water. A blank analysis study showed the absence of memory effects for this fibre. The reproducibility (expressed as a percentage of relative standard deviation) was 6-11% and the detection limits were between 0.078 and 0.52microgL-1 for bromoform and chloroform, respectively. Finally, the method was applied to determine THM concentration in two drinking water samples.  相似文献   

2.
This paper describes the development of a headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) method for determining phthalates in wine. The HS-SPME conditions were thoroughly studied: first, the performance of six fibres at three temperature values and two sample volumes was surveyed by means of a 6 x 3 x 2 multi-factor categorical experimental design. From this study, three fibres - carbowax-divinylbenzene (CW-DVB), polyacrylate (PA) and polydimethylsiloxane-divinylbenzene (PDMS-DVB) - were selected. Then, temperature, sample volume and sodium chloride concentration were optimised using a central composite design and the overall desirability function for each fibre. The optimal values were 70 degrees C, a NaCl concentration of 2.6, 3.6 and 5.5M for PA, CW-DVB and PDMS-DVB fibres, respectively, and sample volumes of 4.0, 3.5 and 3.0 mL. Next, the performance characteristics of the three fibres were obtained and compared. PDMS-DVB fibre showed the best repeatability values followed by CW-DVB. PA fibre was not suitable for diethylhexylphthalate extraction and showed poor repeatability for the heavier phthalates, and was therefore discarded. Finally, the performance of CW-DVB and PDMS-DVB fibres was checked for red, white and rosé wines.  相似文献   

3.
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.  相似文献   

4.
A suitable analytical procedure based on static headspace solid-phase microextraction (SPME) followed by thermal desorption gas chromatography-ion trap mass spectrometry detection (GC-(ITD)MS), was developed and applied for the qualitative and semi-quantitative analysis of volatile components of Portuguese Terras Madeirenses red wines. The headspace SPME method was optimised in terms of fibre coating, extraction time, and extraction temperature. The performance of three commercially available SPME fibres, viz. 100 mum polydimethylsiloxane; 85 mum polyacrylate, PA; and 50/30 mum divinylbenzene/carboxen on polydimethylsiloxane, was evaluated and compared. The highest amounts extracted, in terms of the maximum signal recorded for the total volatile composition, were obtained with a PA coating fibre at 30 degrees C during an extraction time of 60 min with a constant stirring at 750 rpm, after saturation of the sample with NaCl (30%, w/v). More than sixty volatile compounds, belonging to different biosynthetic pathways, have been identified, including fatty acid ethyl esters, higher alcohols, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, and monoterpenols/C(13)-norisoprenoids.  相似文献   

5.
A solid-phase microextraction method has been developed for the determination of 19 chlorophenols (CPs) in environmental samples. The analytical procedure involves direct sampling of CPs from water using solid-phase microextraction (SPME) and determination by liquid chromatography with electrochemical detection (LC-ED). Three kinds of fibre [50 microm carbowax-templated resin (CW-TPR), 60 microm polydimethylsiloxane-divinylbenzene (PDMS-DVB) and 85 microm polyacrylate (PA)] were evaluated for the analysis of CPs. Of these fibres, CW-TPR is the most suitable for the determination of CPs in water. Optimal conditions for both desorption and absorption SPME processes, such as composition of the desorption solvent (water-acetonitrile-methanol, 20:30:50) and desorption time (5 min), extraction time (50 min) and temperature (40 degrees C) as well as pH (3.5) and ionic strength (6 g NaCl) were established. The precision of the SPME-LC-ED method gave relative standard deviations (RSDs) of between 4 and 11%. The method was linear over three to four orders of magnitude and the detection limits, from 3 to 8 ng l(-1), were lower than the European Community legislation limits for drinking water. The method was applied to the analysis of CPs in drinking water and wood samples.  相似文献   

6.
Alkylthiols are very reactive and highly volatile compounds, and thus it is difficult to determine these in the water phase. In the present work, an in situ derivatization step prior to solid-phase microextraction (SPME) has been developed for their determination in water samples. The dinitrobenzylation reaction was selected because the high chemical stability of the corresponding thioethers formed provides a significant increase in the distribution coefficient between the SPME fibre and the aqueous phase, and a potential increase in the selectivity and sensitivity. Therefore, different derivatization reaction conditions (i.e. pH, temperature, reaction time and derivatizating reagent concentration) have been studied. Then, the main parameters affecting to the SPME process, that is coating selection, extraction time profile, extraction and desorption temperatures, have been optimized. Finally, a method based on a simple 2,4-dinitrophenylation reaction at pH 8–10, in 60?min at 75°C, coupled to direct SPME using PDMS-DVB fibres at 30°C for 45?min is proposed. The performance of the method provided a good linearity and precision data, and the detection limits were in the low ng?L?1 level.  相似文献   

7.
A high-temperature configuration for a diaphragm valve-based gas chromatography (GCXGC) instrument is demonstrated. GCxGC is a powerful instrumental tool often used to analyze complex mixtures. Previously, the temperature limitations of valve-based GCxGC instruments were set by the maximum operating temperature of the valve, typically 175 degrees C. Thus, valve-based GCxGC was constrained to the analysis of mainly volatile components; however, many complex mixtures contain semi-volatile components as well. A new configuration is described that extends the working temperature range of diaphragm valve-based GCxGC instruments to significantly higher temperatures, so both volatile and semi-volatile compounds can be readily separated. In the current investigation, separations at temperatures up to 250 degrees C are demonstrated. This new design features both chromatographic columns in the same oven with the valve interfacing the two columns mounted in the side of the oven wall so the valve is both partially inside as well as outside the oven. The diaphragm and the sample ports in the valve are located inside the oven while the temperature-restrictive portion of the valve (containing the O-rings) is outside the oven. Temperature measurements on the surface of the valve indicate that even after a sustained oven temperature of 240 degrees C, the portions of the valve directly involved with the sampling from the first column to the second column track the oven temperature to within 1.2% while the portions of the valve that are temperature-restrictive remain well below the maximum temperature of 175 degrees C. A 26-component mixture of alkanes, ketones, and alcohols whose boiling points range from 65 degrees C (n-hexane) to 270 degrees C (n-pentadecane) is used to test the new design. Peak shapes along the first column axis suggest that sample condensation or carry-over in the valve is not a problem. Chemometric data analysis is performed to demonstrate that the resulting data have a bilinear structure. After over 6 months of use and temperature conditions up to 265 degrees C, no deterioration of the valve or its performance has been observed.  相似文献   

8.
An SPME method was developed for sampling gaseous 2,4-toluene diisocyanate (2,4-TDI) involving derivatisation of the isocyanate by reacting with dibutylamine (DBA). The TDI-DBA derivative thus formed was determined by LC-MS-MS utilising atmospheric pressure chemical ionisation (APCI). As a first step, DBA was loaded onto a poly(dimethylsiloxane)/divinylbenzene (PDMS-DVB) fibre coating by direct vapour-phase extraction of a highly concentrated diethyl ether solution of DBA. The DBA-loaded fibre was then exposed to an artificially generated atmosphere of gaseous 2,4-TDI. The linearity of the method ranged from 52.8 to 3100 microg m(-3) (6.8 to 400 ppbv) with a sampling time of 60 min. The proposed method has been applied to 2,4-TDI determination in an artificially generated dynamic standard atmosphere, yielding an approximate method detection limit (MDL) of 2 microg m(-3) (0.25 ppbv). This concentration is one twentieth of the Occupational Safety and Health Administration (OSHA) 8-hour time-weighted average (TWA) exposure limit. The sampler with the PDMS-DVB-DBA coating was found to be stable and retains the required amount of DBA for at least 10 days, an important feature for sampling systems with potential in-situ applications.  相似文献   

9.
Volatile compounds are the main chemical species determining the characteristic aroma of food. A procedure based on headspace solid-phase microextraction (HP-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed to investigate the volatile compounds of sweet potato. The experimental conditions (fiber coating, incubation temperature and time, extraction time) were optimized for the extraction of volatile compounds from sweet potato. The samples incubated at 80 °C for 30 min and extracted at 80 °C by the fiber with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating for 30 min gave the most effective extraction of the analytes. The optimized method was applied to study the volatile profile of four sweet potato cultivars (Anna, Jieshu95-16, Ayamursaki, and Shuangzai) with different aroma. In total, 68 compounds were identified and the dominants were aldehydes, followed by alcohols, ketones, and terpenes. Significant differences were observed among the volatile profile of four cultivars. Furthermore, each cultivar was characterized by different compounds with typical flavor. The results substantiated that the optimized HS-SPME GC-MS method could provide an efficient and convenient approach to study the flavor characteristics of sweet potato. This is the basis for studying the key aroma-active compounds and selecting odor-rich accessions, which will help in the targeted improvement of sweet potato flavor in breeding.  相似文献   

10.
山楂挥发性化合物的气相色谱-质谱分析   总被引:4,自引:0,他引:4  
陈凌云  谢笔钧  游铜锡 《色谱》1997,15(3):219-221
采用蒸馏-萃取法收集山楂果的挥发性化合物,通过气相色谱及气相色谱/质谱分析,鉴定了32种化合物,占总峰面积的61%~68%。其中主要的10种化合物是顺-3-己烯醇、顺-3-乙酸己烯酯、α-萜品醇、糠醛、己醇、乙酸己酯、壬醛、柠檬醛、3-戊烯-2-酮,反-2-癸烯醛等。  相似文献   

11.
A simple and fast method based on solid-phase microextraction (SPME) followed by fast gas chromatography (Fast GC) has been developed for the analysis of volatile compounds in Asturian apple juices employed in the cider production. Three different fiber coatings have been checked (PDMS, PDMS-DVB and CAR-PDMS) and PDMS-DVB has been presented to be the most suitable one. Experimental design has been employed in the optimization of extraction factors and robustness assessment. The use of Fast GC allowed the separation of 14 compounds (esters, aldehydes and alcohols) in approximately 4 min, clearly reducing the analysis time when compared to conventional GC. Good linearity, recoveries and repeatability of the solid-phase microextraction were obtained with r(2) values, recoveries and relative standard deviations ranging from 0.9822 to 0.9998, 83.2 to 109.8% and 0.5 to 11.7%, respectively, using standard solution.  相似文献   

12.
The headspace solid-phase microextraction (HS-SPME) efficiencies from vegetable oil of the recently available Carboxen-poly(dimethylsiloxane) (PDMS) and divinylbenzene-Carboxen-PDMS fibres were found to be much greater than those of the PDMS fibre for a number of volatile contaminants. Using these Carboxen-based fibres, the commonly used HS-SPME equilibration times for aqueous matrices of 30-45 min at room temperature for a number of halogenated and aromatic analytes with volatilities ranging from 1,1-dichloroethylene to hexachlorobenzene were found to be insufficient for the effective extraction of the less volatile analytes from vegetable oil. HS-SPME at 100 degrees C for 45 min, followed by rapid cooling to 0 degrees C with a 10 min continuing extraction, however, significantly increased the SPME efficiencies for the less volatile analytes. Spiking solutions were prepared in vegetable oil instead of methanol as the latter was found to displace analytes from the Carboxen material. Using either of the Carboxen-based fibres and SPME at 100 degrees C, all the target analytes could be determined at low or sub-microg kg(-1) with repeatability < or =10%, even though an equilibrium SPME of the less volatile analytes was not achieved.  相似文献   

13.
A method for the identification of volatile organic compounds in packaging materials is presented in this study. These compounds are formed by thermooxidative degradation during the extrusion coating process in the manufacture of packaging. Headspace solid-phase microextraction (HS-SPME) was used as sample preparation technique prior to the determination of the volatile organic compounds by gas chromatography-mass spectrometry (GC-MS). The effects of extraction variables, such as the type of fibre, the incubation temperature, the pre-incubation time, the size of the vial and the extraction time on the amounts of the extracted volatile compounds were studied. The optimal conditions were found to be: carboxen-polydimethylsiloxane 75 microm fibre, 5 min of pre-incubation time, 100 degrees C of incubation temperature, 20-ml vial, and 15 min of extraction time. The chromatograms obtained by HS-SPME and static headspace extraction were compared in order to show that the HS-SPME method surpasses the static headspace method in terms of sensitivity. Twenty-five compounds were identified including carbonyl compounds (such as 3-methyl-butanal, 3-heptanone or octanal), carboxylic acids (such as pentanoic acid or hexanoic acid) known as odour causing compounds and hydrocarbons (such as decane, undecane or dodecane). Finally, the method was applied to different packaging samples (one odour-unacceptable, two odour-acceptable, and three odourless samples) and to the raw materials in order to find out the odour-responsible volatile organic compounds and their source.  相似文献   

14.
Criado MR  Pereiro IR  Torrijos RC 《Talanta》2004,63(3):533-540
A procedure for the determination of several coplanar and non coplanar PCBs in ash samples is described. Analytes were extracted from the samples using dimethylsulfoxide (DMSO) under the action of a microwave field, and then they were concentrated on a PDMS-DVB solid-phase microextraction (SPME) fibre using the headspace mode, after water dilution of the DMSO extract. Determinations were carried out using GC-ECD and GC-MS detection. Influences of microwave extraction (solvent volume, temperature and time) and SPME conditions (stirring, kind of SPME fibre, salt and water addition, sampling time and temperature) on the performance of the whole analytical procedure were systematically investigated. Working under optimal conditions quantification limits from 0.2 to 1.5 ng g−1 were obtained for all the compounds, except for PCB 209, which could not be consistently extracted from the sample using the proposed conditions.  相似文献   

15.
This study describes the sampling efficiency and storage stability of compounds typically present in occupational atmospheres on the sorbents Anasorb CSC, Anasorb 747, and Chromosorb 106. The selection of compounds included in the study contained aliphatic and aromatic hydrocarbons, alcohols, esters, glycol ethers, ketones, and halogenated compounds, thus representing a wide range of chemical and physical properties. The different sorbent tubes were simultaneously exposed to the selected compounds as three different mixtures of solvent vapours in air, and storage both at room temperature and at -22 degrees C was investigated. The sorbent tubes were stored and analyzed at two different laboratories. The sampling efficiencies of all the investigated compounds were excellent on Anasorb CSC and Anasorb 747, while Chromosorb 106 did not give such good results for the most volatile compounds under study. The room temperature storage stability on Chromosorb 106, however, was good for all compounds, although formation of artefacts was observed during storage, a disadvantage that was substantially reduced by storage at -22 degrees C. The room temperature storage stability on Anasorb CSC was good for all compounds except some of the ketones. The room temperature storage stability of these ketones, especially cyclohexanone and 2-butanone, was much better on Anasorb 747, which still showed the same excellent storage stability for the remaining compounds. When stored in a freezer, the storage stability of all compounds, including the ketones, was very good on all sorbents. Among the sorbents under study, Anasorb 747 appears to be the most suitable all-round sorbent for monitoring volatile compounds in occupational air, with satisfactory capabilities regarding both sampling efficiency and storage stability.  相似文献   

16.
郭方遒  黄兰芳  周邵云 《色谱》2007,25(1):43-47
采用顶空固相微萃取-气相色谱-质谱法(HS-SPME-GC-MS)分离鉴定了白术中的挥发性成分,并与采用传统的水蒸气蒸馏法(SD)提取的挥发性成分进行了比较。实验中筛选了固相微萃取纤维头,优化了SPME的操作条件。样品在70 ℃下平衡30 min后,用65 μm聚二甲基硅氧烷-二乙烯基苯(PDMS-DVB)纤维头对白术样品顶空吸附30 min,于250 ℃下解吸4 min, 然后采用GC-MS对解吸物进行分离鉴定;采用HS-SPME-GC-MS鉴定出41种组分,占总峰面积的90.81%;采用SD-GC-MS鉴定出31个组分,占总峰面积的88.19%,且采用SD所提取的组分基本上都被固相微萃取所提取。结果表明, HS-SPME可取代耗时的SD用于白术中挥发性物质的提取。  相似文献   

17.
Despite the continuing development of SPME (solid-phase microextraction) fibre coatings, their selection presents some difficulties for analysts in choosing the appropriate fibre for a certain application. There are two distinct types of SPME coatings available commercially. The most widely used are poly(dimethylsiloxane) (PDMS) and poly(acrylate) (PA). Supelco has developed new mixed phases consisting of porous polymer particles, either poly(divinylbenzene) (DVB) or Carboxen suspended in a matrix of PDMS or Carbowax for extracting analytes via adsorption. In addition to the nature of the extracting phase, the thickness of the polymeric film must be taken into account and, surprisingly, the construction of the fibres when apparently they bear the same coating, as it is the case of the three PDMS-DVB fibres available. Other fibre structure properties not well explored were identified and must be taken into consideration. To elucidate their extraction efficiency, three PDMS-DVB fibres, namely 60 microm for HPLC use, 65 microm for GC use and 65 microm StableFlex for GC use, were compared with regard to the extraction of 36 compounds included in four pesticide groups. The first was particularly suited for the extraction of organophosphorus pesticides and triazines whereas the StableFlex exhibited advantages in the analysis of organochlorine pesticides and pyrethroids. An explanation for the extraction differences is suggested based on the different structure of the fibres. Detection limits in the range of 1-10 ng/l for organochlorine pesticides, 1-30 ng/l for organophosphorus pesticides, 8-50 ng/l for triazines and 10-20 ng/l for pyrethroids were attained in a method using the 60 microm PDMS-DVB fibre. The fibre maintains its performance at well above 100 extractions with between-day precision below 10%.  相似文献   

18.
The hyphenation of static headspace sampling with comprehensive 2D GC equipped with a modulator based on capillary flow technology and a flame ionization detector was used to separate and identify 43 representative target volatile compounds (light hydrocarbons, carbonyls, pyrazines, alcohols, furans, and benzenes) frequently detected in the roasting process of nuts. Five column combinations with differing degrees of orthogonality (one conventional and four inverted phase sets) were tested in order to obtain the best conditions for analyzing these volatile compounds. Optimization of the working conditions for each of the different column combinations was performed by means of a central composite design. The best results in terms of separation and differentiation among the different chemical groups were achieved with a combination of inverted phase columns (first dimension: highly polar, INNOWax; second dimension: mid‐polar, ZB‐35). Additionally, a reference template was developed to provide an effective and rapid analysis of the target compounds. Finally, the proposed method was successfully employed to identify volatile compounds in raw and roasted almond samples from the Spanish cultivar Largueta.  相似文献   

19.
大气有机物预浓缩用吸附剂富集特性的气相色谱法研究   总被引:3,自引:0,他引:3  
何大森  赵雷  洪许峰  李似姣  沈振陆 《色谱》1997,15(4):274-277
用气相色谱方法研究了吸附剂对大气有机物的富集特性,提出用吸附参数泄漏体积BTV(最大采样体积)以及脱附参数最低脱附温度或最小吹扫体积作为富集指标的新思想,并用冲洗色谱法测定了一些有机物在GDX-301上的特性参数。不同温度的特性参数由1og(BTV)与1/Tc的线性关系外推得到。实验表明,所研究的20种有机物(除了甲醇外)在装有2gGDX-301的采样管和0.14gGDX-301的聚焦管上的最大采样体积分别不小于0.8L(35℃)和0.3L(0℃)。  相似文献   

20.
The aroma profile of cocoa products was investigated by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS). SPME fibers coated with 100 μm polydimethylsiloxane coating (PDMS), 65 μm polydimethylsiloxane/divinylbenzene coating (PDMS-DVB), 75 μm carboxen/polydimethylsiloxane coating (CAR-PDMS) and 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane on a StableFlex fiber (DVB/CAR-PDMS) were evaluated. Several extraction times and temperature conditions were also tested to achieve optimum recovery. Suspensions of the samples in distilled water or in brine (25% NaCl in distilled water) were investigated to examine their effect on the composition of the headspace. The SPME fiber coated with 50/30 μm DVB/CAR-PDMS afforded the highest extraction efficiency, particularly when the samples were extracted at 60 °C for 15 min under dry conditions with toluene as an internal standard. Forty-five compounds were extracted and tentatively identified, most of which have previously been reported as odor-active compounds. The method developed allows sensitive and representative analysis of cocoa products with high reproducibility. Further research is ongoing to study chocolate making processes using this method for the quantitative analysis of volatile compounds contributing to the flavor/odor profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号