首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel absorbent was prepared by dimercaptosuccinic acid chemically modifying mesoporous titanium dioxide and was employed as the micro-column packing material for simultaneous separation/preconcentration of inorganic arsenic and antimony species. It was found that both trivalent and pentavalent of inorganic As and Sb species could be adsorbed quantitatively on dimercaptosuccinic acid modified TiO2 within a pH range of 4–7, and only As(III) and Sb(III) could be quantitatively retained on the micro-column within a pH range of 10–11 while As(V) and Sb(V) were passed through the micro-column without the retention. Based on this fact, a new method of flow injection on-line micro-column separation/preconcentration coupled to inductively coupled plasma optical emission spectrometry was developed for simultaneous speciation of trace inorganic arsenic and antimony in natural waters. Under the optimized conditions, an enrichment factor of 10 and sampling frequency of 10 h− 1 were obtained with on-line mode. The detection limits of As(III), As(V), Sb(III), and Sb(V) are 0.53, 0.49, 0.77 and 0.71 ng mL− 1 for on-line mode and as low as 0.11, 0.10, 0.15 and 0.13 ng mL− 1 for off-line mode due to its higher enrichment factor (50), respectively. The relative standard deviations of two modes are less than 6.7% (C = 20 ng mL− 1, n = 7). The concentration ratio of lower oxidation states/higher oxidation states changing from 1:10 to 10:1 has no obvious effect on the recoveries of As(III) and Sb(III). In order to validate the developed method, two certified reference materials of GSBZ5004-88 and GBW(E)080545 water sample were analyzed and the determined values are in good agreement with the certified values. The proposed method was successfully applied to the simultaneous speciation of inorganic arsenic and antimony in natural waters.  相似文献   

2.
Rui Liu  Maoyang Xi  Yi Lv 《Talanta》2009,78(3):885-635
Arsine trapping on resistively heated tungsten coil was investigated and an analytical method for ultratrace arsenic determination in environmental samples was established. Several chemical modifiers, including Re, Pt, Mo, Ta and Rh, were explored as permanent chemical modifiers for tungsten coil on-line trapping and Rh gave the best performance. Arsine was on-line trapped on Rh-coated tungsten coil at 640 °C, then released at 1930 °C and subsequently delivered to an atomic fluorescence spectrometer (AFS) by a mixture of Ar and H2 for measurement. In the medium of 2% (v/v) HCl and 3% (m/v) KBH4, arsine can be selectively generated from As(III). Total inorganic arsenic was determined after pre-reduction of As(V) to As(III) in 0.5% (m/v) thiourea-0.5% (m/v) ascorbic acid solution. The concentration of As(V) was calculated by difference between the total inorganic arsenic and As(III), and inorganic arsenic speciation was thus achieved. With 8 min on-line trapping, the limit of detection was 10 ng L−1 for As(III) and 9 ng L−1 for total As; and the precision was found to be <5% R.S.D. (n = 7) for 0.2 ng mL−1 As. The proposed method was successfully applied in total arsenic determination of several standard reference materials and inorganic arsenic speciation analysis of nature water samples.  相似文献   

3.
Quiroz W  Olivares D  Bravo M  Feldmann J  Raab A 《Talanta》2011,84(2):593-598
HG-AFS is highly sensitive and low cost detection system and its use for antimony chemical speciation coupled to HPLC is gaining popularity. However speciation analysis in soils is strongly hampered because the most efficient extractant reported in the literature (oxalic acid) strongly inhibits the generation of SbH3 by Sb(V), the major species in this kind of matrix, severely affecting its detection limits. The purpose of this research is to reduce the detection limit of Sb(V), by using a post column on-line reduction system with l-cysteine reagent (HPLC/pre-reduction/HG-AFS). The system was optimized by experimental design, optimum conditions found were 2% (w/v) and 10 °C temperature coil. Detection limits of Sb(V) and Sb(III) in oxalic acid (0.25 mol L−1) were improved from 0.3 and 0.1 μg L−1 to 0.07 and 0.07 μg L−1, respectively. The methodology developed was applied to Chilean soils, where Sb(V) was the predominant species.  相似文献   

4.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

5.
A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid–liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L− 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9–4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.  相似文献   

6.
Mingli Chen 《Talanta》2009,78(1):88-1591
The separation and speciation of inorganic arsenic(III) and arsenic(V) are facilitated by employing a novel sequential injection system incorporating two mini-columns followed by detection with hydride generation atomic fluorescence spectrometry. An octadecyl immobilized silica mini-column is used for selective retention of the complex between As(III) and APDC, while the sorption of As(V) is readily accomplished by a 717 anion exchange resin mini-column. The retained As(III)-PDC complex and As(V) are effectively eluted with a 3.0 mol L−1 hydrochloric acid solution as stripping reagent, which well facilitates the ensuing hydride generation process via reaction with tetrahydroborate. With a sampling volume of 1.0 mL and an eluent volume of 100 μL for both species, linear ranges of 0.05-1.5 μg L−1 for As(III) and 0.1-1.5 μg L−1 for As(V) are obtained, along with enrichment factors of 7.0 and 8.2, respectively. Precisions of 2.8% for As(III) and 2.9% for As(V) are derived at the concentration level of 1.0 μg L−1. The practical applicability of the procedure has been demonstrated by analyzing a certified reference material of riverine water (SLRS-4), in addition to spiking recovery in a lake water sample matrix.  相似文献   

7.
A novel disk electrochemical hydride generator has been developed for the determination of As and Sb. Compared with the traditional thin-layer cell, the disk cell combined the advantages of quick assembly and easy operation. This electrochemical system for hydride generation in neutral buffer solutions has been studied for analytical usefulness in coupling with atomic fluorescence spectrometry. It was found that the use of neutral phosphate buffer solution could markedly increase the fluorescence intensity of As(III) and Sb(III) and reduce the impact of cathode erosion on the stability of signal intensity. At the same time, the fluorescence intensity of As(V) and Sb(V) were almost suppressed totally. The detection limits (3σ) of 0.031 μg L−1 As(III) and 0.026 μg L−1 Sb(III) in aqueous solutions were obtained, respectively. The precisions (n = 11) for 20 μg L−1 As(III) and Sb(III) were 2.0% and 2.7%, respectively. The method was successfully applied for determination of different oxidation states of As and Sb in environmental samples.  相似文献   

8.
Study on simultaneous speciation of arsenic and antimony by HPLC-ICP-MS   总被引:1,自引:0,他引:1  
A method was developed for the simultaneous speciation of arsenic and antimony with HPLC-ICP-MS using C30 reversed phase column. Eight kinds of arsenic compounds (As(III), As(V), monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenobetaine (AB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium (TeMA)), Sb(III) and Sb(V) were simultaneously separated by the special mobile phase containing ammonium tartrate. Especially for the species of organic As, a C30 column was better than a C18 column in the effect of separation. Limits of detection (LOD) for these elements were 0.2 ng ml−1 for the species of each As, and 0.5 ng ml−1 for the species of each Sb, when a 10 μl of sample was injected, respectively. The proposed method was applied to a hot spring water and a fish sample.  相似文献   

9.
Liquid-liquid extraction preconcentration technique which allows the achievement of extremely high ratio between the aqueous and organic phase was specified as semi-microextraction. A modified highly effective liquid phase semi-microextraction (LSME) procedure was developed for preconcentration and determination of ultra trace levels of inorganic antimony species in environmental waters using electrothermal atomic absorption spectrometry (ETAAS) for quantification. Antimony(III) species were selectively extracted as dithiocarbamate complexes from 100 mL aqueous phase into 250 μL xylene at pH range of 5-8. Total Sb was determined using the same extraction system over a sample acidity range of pH 0-1.2 without the need for pre-reduction of Sb(V) to Sb(III). The concentration of Sb(V) was obtained as the difference between that of total antimony and Sb(III). With an 8 min extraction an enrichment factor of 400 was achieved. The limit of detection (3 s) was 2 ng L−1 Sb. The method was not affected by the presence of up to 0.01% humic acid, 0.025 mol L−1 EDTA, 0.01 mol L−1 tartaric acid and 0.001 mol L−1 F. Recoveries of spiked Sb(III) and Sb(V) in river, tap, and sea water samples ranged from 93 to 108%. The results for total antimony concentration in the river water reference material SLRS-5 were in good agreement with the information value. The procedure was applied to the determination and quantification of dissolved antimony species in natural waters.  相似文献   

10.
In the present paper, we develop a methodology for antimony speciation in occupationally exposed human urine samples by high-performance liquid chromatography with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The methodology was applied to the determination of Sb(V), Sb(III) and (CH3)3SbCl2 (TMSb(V)). Retention time of Sb(V), Sb(III) and TMSb(V) species were 0.88, 2.00 and 3.61 and the detection limits were 0.18, 0.19 and 0.12 μg L− 1, for 100 μL loop injection respectively which is considered useful for elevated/occupationally exposed urine samples. Studies on the stability of antimony species in urine samples on the function of the elapsed time of preservation (4 °C) and storage (− 70 °C) were performed. Results revealed that antimony species are highly unstable at − 70 °C, probably due to co-precipitation reaction. In this kind of matrix transformation during preservation time may occur, such as oxidation of Sb(III) to Sb(V) and transformation into species that do not elute from the column. EDTA shows that it is able to stabilize Sb(III) for more than one week of preservation time at 4 °C avoiding co-precipitation during storage at − 70 °C. Finally the methodology was applied to occupationally exposed human urine samples. 25% of specimens present antimony levels (Sb(V)) of more than 5 μg L− 1.  相似文献   

11.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

12.
A study was undertaken to ascertain the analytical capabilities of l-methionine immobilized on controlled pore glass for Sb preconcentration and speciation. A fully automated on-line system, implemented with hydride generation (HG) and inductively coupled plasma optical emission spectrometry (ICP OES), was used. Sb(III), at pH 10 was selectively retained in the column containing the immobilized aminoacid, while Sb(V) was not retained at all. A 30% HCl solution was used as eluent agent. Prior to total Sb determination, a pre-reduction step with thiourea was necessary. An on-line pH adjusting and pre-reduction of Sb(V) was achieved in a fully automated system. The detection limit for the preconcentration of 10 mL of an aqueous solution was 70 ng L−1 with a relative standard deviation of 2%. An enrichment factor of 20 was achieved when 10 mL of sample was passed through the system, reaching a throughput of 23 samples per hour. The method was successfully applied to the determination of Sb(III) and total Sb in urine.  相似文献   

13.
A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L− 1 H2SO4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g− 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g− 1) for Sb(V) and 5.1% (4.6 ng g− 1) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g− 1 and Sb(V) from 14.7 to 21.2 ng g− 1. The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.  相似文献   

14.
Atomic fluorescence spectrometry was used as an element-specific detector in hybridation with liquid chromatography (LC) and hydride generation for the speciation of Sb(III), Sb(V) and trimethylantimony dichloride (TMSbCl2). The three species were poorly resolved in a single chromatogram but good results were obtained by anion-exchange chromatography, using a mobile phase with 20 mM EDTA and 8 mM hydrogenphthalate to separate Sb(III) and Sb(V) and 1 mM carbonate at pH 10 to separate Sb(V) and TMSbCl2. Calibration graphs were linear between 2 and 100 μg l−1. Detection limits were 0.9, 0.5 and 0.7 μg l−1 for Sb(III), Sb(V) and TMSbCl2, respectively. The method was applied to the speciation of antimony in environmental samples.  相似文献   

15.
In this study, we present a method for the detection of As and Sb using electrochemical hydride generation (EcHG) under alkaline conditions. Compared to the traditional acid mode, the alkaline mode has better interference tolerance. Moreover, As(III) and Sb(III) could be directly detected by the proposed method. Completely inorganic As and Sb could be detected with a pre-reduction step. The electrolytic reduction process of Sb is studied in detail by cyclic voltammetry. The results indicate that the location for the introduction of carrier gas is the most important factor that influences the desorption process of adsorbed hydrides. The rate-controlling step for stibine (SbH3) formation in an alkaline medium is the desorption process of SbH3 from the cathode surface. The effects of electrolytic conditions and interference ions on EcHG have been studied. Under the optimized conditions, the detection limits (3σ) of As(III) and Sb(III) in aqueous solutions are 0.37 μg L1and 0.32 μg L1, respectively; relative standard deviations (n = 6) of 2.8% and 3.1% for 20 μg L1 As and Sb are obtained. This method has been applied in the determination of different oxidation states of As and Sb in Yangtze River water.  相似文献   

16.
A fast extraction procedure has been developed for Sb(III) and Sb(V) oxoanions speciation in airborne particulate matter samples. Different extraction media (diammonium tartrate, hidroxilammonium clorhidrate, citric acid + ascorbic acid, phosphoric acid and citrate solutions) were tried, with assistance of an ultrasonic probe. The operation power and time of extraction were also optimized. The higher extraction recoveries were obtained with a 100 mmol L−1 hidroxilammonium clorhidrate aqueous solution assisted by the ultrasound probe operated at 50 W during 3 min. The extracts were analyzed by HPLC-HG-AFS. The chromatographic separation of Sb(III) and Sb(V) was also optimized using diammonium tartrate and phthalic acid as mobile phases. The separation of both Sb species was performed in less than 3 min under isocratic conditions, using a 200 mmol L−1 diammonium tartrate solution. The proposed extraction procedure and the HPLC-HG-AFS instrumental coupling have been successfully applied to airborne particulate matter samples, with high Sb content, collected in heavy traffic streets from Buenos Aires (Argentina). The results showed the presence of both Sb species at similar concentrations in the ng m−3 level. The extraction yield was higher than 90% for all the analyzed samples.  相似文献   

17.
The capabilities and limitations of the continuous flow injection hydride generation technique, coupled to atomic absorption spectrometry, for the speciation of major antimony species in seawater, were investigated. Two pre-concentration techniques were examined. After continuous flow injection hydride generation and collection onto a graphite tube coated with iridium, antimony was determined by graphite furnace atomic absorption spectrometry. The low detection limits obtained (∼5 ng l−1 for Sb(III) and ∼10 ng l−1 for Sb(V) for 2.5 ml seawater samples) permitted the determination of Sb(III) and total antimony in seawater with the use of selective hydride generation and on-line UV photooxidation. The number of samples that can be analyzed is about 15 per hour for Sb(III) determinations and 10 per hour for total antimony determinations. The analysis of seawater samples showed that Sb(V) was the predominant species, even in the presence of important biological activity.  相似文献   

18.
This paper describes a procedure for the speciation of antimony by UV-vis spectroscopy using pyrogallol as complexing agent. A partial least squares (PLS) regression was performed to resolve highly overlapping spectrophotometric signals obtained from mixtures of Sb(III) and Sb(V). The relative error in absolute value was less than 5% when concentrations of several mixtures were calculated. The minimum concentration determined was 3.96 × 10−5 mol dm−3 and 3.98 × 10−5 mol dm−3 for Sb(V) and Sb(III), respectively. The analysis of the possible effect of the presence of foreign ions in the solution was performed and the procedure was successfully applied to the speciation of antimony in pharmaceutical preparations and aqueous samples.  相似文献   

19.
A separation procedure for antimony(III) and antimony(V) was developed with the use of chelating celluloses. Sb(III) was separately pre-concentrated on imino diacetic acid–ethyl cellulose in the acidic pH range, in which the uptake of Sb(V) was negligible in the μg L− 1 concentration range. On the other hand, both Sb species Sb(V) and Sb(III) were pre-concentrated on a chloride form of 2,2′-diaminodiethylamine-cellulose. These solid phase extraction procedures were combined with graphite furnace atomic absorption spectrometry (SPE–GFAAS) for Sb detection. Pharmaceutical compounds of organic and inorganic types (ten compounds), as well as mineral water samples (twelve types) were analyzed. Detection limits of 0.18 µg L− 1 Sb(III) and 0.25 µg L− 1 Sb(V) were found in aqueous sample solutions and water samples, respectively, considering a 25-fold pre-concentration. The total Sb, mostly in the form of Sb(V), could be determined in phosphate-containing pharmaceuticals, while in phosphoric acid, Sb(III) was the dominant form. In all other types of samples the Sb content was below the detection threshold, and therefore, the potential suitability of the SPE–GFAAS method for the determination of Sb(III) species was proven by recovery tests of spiked samples. This method ensures the required detection power with regard to the allowable Sb limits established by international organizations.  相似文献   

20.
Jitmanee K  Oshima M  Motomizu S 《Talanta》2005,66(3):529-533
A novel and simple flow-based method was developed for the simultaneous determination of As(III) and As(V) in freshwater samples. Two miniature columns with a solid phase anion exchange resin, placed on two 6-way valves were utilized for the solid-phase collection/concentration of arsenic(III) and arsenic(V), respectively. As(III) could be retained on the column after its oxidation to As(V) species with an oxidizing agent. The collected analytes were then sequentially eluted by 2 M nitric acid and introduced into ICP-AES. Potassium permanganate was examined as potential oxidizing agent for conversion of As(III) to As(V). The standard deviation of the analytical signals (peak height) for the replicate analysis (n = 5) of 0.5 μg l−1 solution were 3 and 5% for As(III) and As(V), respectively. The limit of detection (3σ) for both As(III) and As(V) were 0.1 μg l−1. The proposed system produced satisfactory results on the application to the direct analysis of inorganic arsenic species in freshwater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号