首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang T  Anslyn EV 《Organic letters》2007,9(9):1627-1629
[diagram: see text] Using a boronic acid receptor that was previously found to have high affinity for gluconic acid, we created a colorimetric indicator displacement assay (IDA) that can report the concentration of the product of glucose oxidase (GOx) catalyzed glucose oxidation. The color change obtained directly reflects the concentration of glucose. Our sensing ensemble was then successfully applied to determine the glucose concentration in human serum, which offers a facile, colorimetric, sensitive, and accurate glucose test.  相似文献   

2.
The potency of pharmaceutical compounds acting on ion channels can be determined through measurements of ion channel conductance as a function of compound concentration. We have developed an artificial lipid bilayer chip for simple, fast, and high-yield measurement of ion channel conductance with simultaneous solution perfusion. Here we show the application of this chip to the measurement of the mammalian cold and menthol receptor TRPM8. Ensemble measurements of TRPM8 as a function of concentration of menthol and 2-aminoethoxydiphenyl borate (2-APB) enabled efficient determination of menthol's EC(50) (111.8 μM ± 2.4 μM) and 2-APB's IC(50) (4.9 μM ± 0.2 μM) in agreement with published values. This validation, coupled with the compatibility of this platform with automation and parallelization, indicates significant potential for large-scale pharmaceutical ion channel screening.  相似文献   

3.
A lesion-specific enzyme-induced DNA strand break assay was developed for an oligonucleotide chip for the determination of UVB-induced cyclobutane pyrimidine dimers (CPDs). A 20-mer of fluorophore-labeled and biotinylated oligonucleotide was immobilized on the chip. CPDs in DNA on the chip were formed by UVB irradiation (312 nm). T4 endonuclease V (T4N5) was used to excise the CPD site as T4N5 sensitively and specifically detects CPDs. The fluorophore-labeled DNA fragments were detected by a laser-induced fluorescence (LIF) detection system. The number of CPDs induced by UVB was determined based on a mathematical equation obtained from a predetermined calibration curve. The yield of UVB-induced CPDs was 1.73 CPDs per megabase per (kJ/m2). The reliability of this value was proved by its similarity to reference values obtained from gel electrophoresis. The developed assay has strong potential to quantify most kinds of UV-induced DNA lesions.  相似文献   

4.
A new method for studying wound healing under realistic conditions in vitro was developed. The method involves creating defined patterns of damaged cell debris with poly(dimethyl)siloxane (PDMS) stamping. This novel assay permitted the quantification of wound healing rates in the presence of cell debris. Experimental results with this assay suggest that cell migration in the presence of cell debris is a two step process requiring (1) non-muscle myosin II-dependent cell clearance followed by (2) cell migration into newly cleared wound areas. The novel stamp wound assay allows the study of coupled cell migration and debris clearance and is a more realistic wound healing assay in vitro.  相似文献   

5.
We describe a novel chemotaxis assay based on the microvalve-actuated release of a chemoattractant from a cell-free microchamber into a cell-containing microchamber. The microvalve chemotaxis device (microVCD) was placed on the stage of a conventional inverted microscope to obtain time-lapse micrographs of neutrophils migrating in a radially-symmetric evolving gradient of the chemotactic factor CXCL8/Interleukin-8. A fluorescent tracer was added to the CXCL8 solution to visualize the evolution of the gradient profile, so that at each time point the cell positions could be assigned CXCL8 concentration values. Tracking of individual neutrophils for 90 minutes showed that (a) the neutrophil migratory response is, on average, radially directed towards the CXCL8 source; (b) significant non-radial displacements occur frequently; and (c) there is considerable heterogeneity in the migration speeds and directions amongst the neutrophil population. A custom-made imaging analysis tool was used to extract measurements of migratory behavior such as speed, velocity along the gradient's radial axis, and the cosine of the turning angle as a function of CXCL8 concentration. The microVCD can be easily adapted to study the migratory behavior of cultured cells other than neutrophils.  相似文献   

6.
发展了一种以微流控芯片为平台的药物诱导细胞凋亡的新方法.选择HeLa细胞为对象,通过浓度梯度芯片形成稳定的药物浓度梯度,诱导HeLa细胞凋亡,利用荧光能量共振转移(fluorescence resonance energy transfer,FRET)成像系统进行实时监测,分析细胞对不同浓度化合物的毒性反应.结果表明,细胞在顺铂诱导下发生明显的起泡和皱缩,FRET比率值逐渐降低,在药物浓度梯度作用下,芯片每个通道内细胞呈现不同程度的凋亡.该方法实现了药物浓度梯度诱导细胞凋亡的实时监测和定量分析,为抗肿瘤药物评价和高通量药物筛选提供了新的手段.  相似文献   

7.
To study cell attachment to biomaterials, several proteins such as fibronectin, collagen IV, heparin, immunoglobulin G, and albumin have been deposited onto polystyrene adsorbed on a self-assembled monolayer (silane or thiol) on glass or gold, respectively. The different steps of this multilayer assembly have been characterized by electrochemical impedance spectroscopy (EIS). These data are compared to those of adhesion rate, viability percentage, and cytoskeleton labeling for a better understanding of the cell adhesion process to each protein. All the proteins are endothelial cell adhering biomolecules but not with the same features. A linear relationship has been established between adhesion rate and resistance of the endothelial cell/protein interface for all negatively charged proteins.  相似文献   

8.
New regulations on water quality require a close control of the possible biological activities known or unexpected pollutants may bring about. We present here a protocol based on the direct exposure of zebrafish to river water and the analysis of expression of specific genes in their scales to determine the presence of compounds with dioxin-like biological activity. The method does not require the killing of animals and allows detection of the biological activity after a single day of exposure. When tested, the method with real samples from the Llobregat River, clear temporal and spatial variations were observed, demonstrating its suitability for monitoring natural variations in water quality linked to specific discharges. High biological activities were unrelated to the currently checked water quality parameters (macropollutants, turbidity, TOC, etc.), but they did correlate with the presence of micropollutants (estrogens, detergents, etc.) related to domestic and/or industrial runoffs. The scale assay therefore provides a new tool to evaluate water quality changes that cannot be easily derived from the existing standard analytical procedures. It ranks among the very few described protocols able to detect biological effects from natural water samples, without a pre-concentration step, and after only 24 h of exposure.  相似文献   

9.
A cationic surfactant ion-selective field-effect transistor (cationic surfactant-ISFET) has been developed based on the tetraphenylborate derivative known as sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. The cationic surfactant-ISFET shows an almost Nernstian response to tetradecyldimethylbenzylammonium chloride (Zephiramine) over a concentration range between 1.0 x 10(-6) M and 1.0 x 10(-3) M, with a slope of 58.5 +/- 1.7 mV/decade. The cationic surfactant-ISFET can be used over a range of pH values, between pH 3 and 9. The cationic surfactant-ISFET shows excellent selectivity for Zephiramine over small inorganic cations, but shows similar selectivity for other cationic surfactants, such as hexadecyltrimethylammonium and stearyltrimethylammonium ions. A microfluidic polymer chip was integrated with the cationic surfactant-ISFET, and this was fabricated using polystyrene plates and stainless wires as a template for the channel. Cationic surfactant-ISFETs used in a batch system and microchips integrated with cationic surfactant-ISFETs showed very similar performance in terms of low detection limits, slope sensitivity and the stability of the potential response. The microfluidic polymer chip was then applied to the determination of cationic surfactants in dental rinses.  相似文献   

10.
A new CE method for fast and efficient analysis of bacterial endotoxins (lipopolysaccharides) is described. It is based on the strong interaction between proteins and endotoxins. The UV absorption of the protein component in the complex is used for the detection. The electrophoretic mobility of the complex hemoglobin/endotoxin can be employed for qualitative analysis of the endotoxin. For instance, the structural differences between "smooth" and "rough" lipopolysaccharides from Salmonella minnesota (wild-type), Salmonella minnesota R595 and Shigella sonnei R562H are reflected in the electrophoretic mobilities of their hemoglobin complex.  相似文献   

11.
SK Kim  WK Moon  JY Park  H Jung 《The Analyst》2012,137(17):4062-4068
Leukocyte adhesion to adhesion molecules on endothelial cells is important in immune function, cancer metastasis and inflammation. This cell-cell binding is mediated via cell adhesion molecules such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) found on endothelial cells. Because these adhesion molecules on endothelial cells vary significantly across several disease conditions such as autoimmune diseases, inflammation or cancer metastasis, investigations of therapeutic agents that down-regulate leukocyte-endothelial interactions have been based on in vitro models using endothelial cell lines. Here we report a new model, an inflammatory mimetic microfluidic chip, which emulates leukocyte binding to cell adhesion molecules (CAM) by controlling the types and ratio of adhesion molecules. In our model, E-selectin was essential for the synergic binding of Jurkat T cells. Immunosuppressive drugs, such as tacrolimus (FK506) and cyclosporine A (CsA), were used to inhibit T cell interactions under the physiologic model of T cell migration at a ratio of 5?:?4.3?:?3.9 (E-selectin?:?ICAM-1?:?VCAM-1). Our results support the potential usefulness of the inflammatory mimetic microfluidic chip as a T cell adhesion assay tool with modified adhesion molecules for applications such as immunosuppressive drug screening. The inflammatory mimetic microfluidic chip can also be used as a biosensor in clinical diagnostics, drug efficacy tests and high throughput drug screening due to the dynamic monitoring capability of the microfluidic chip.  相似文献   

12.
Using a magnetically formed channel called a magnetic channel, a new flow-type cell is proposed. The magnetic channel consists of magnetic walls that are formed by heterogeneous distributions of magnetic flux density around a ferromagnetic track under a magnetic field. The magnetic wall separates the paramagnetic oxidant solution from the diamagnetic reductant solution at a liquid–liquid interface without any solid membranes. In the magnetic channel formed on the cathode, the oxidant solution flows in a quasi-frictionless mode. The anode is placed in the reductant solution surrounding the magnetic channel. Such a geometrical configuration between the oxidant and reductant solutions is interchangeable depending on the magnetism of the solutions. To examine this concept, a Daniel cell system was adopted, where the copper ion in copper sulfate solution is employed as the oxidant and the zinc atom of zinc electrode as the reductant. The copper ion is paramagnetic, so that 1 mol dm−3 copper sulfate solution is injected into the magnetic channel formed on the copper cathode. Zinc sulfate solution (1 mol dm−3; diamagnetic) together with the zinc anode are placed surrounding the magnetic channel. The performance of this flow-type battery was examined up to a current density of 22 mA cm−2. This paper was presented at the International Symposium on Magneto-Science 2005, Yokohama, 2005. Contribution to the special issue “Magnetic Field Effects in Electrochemistry.”  相似文献   

13.
A novel cytokine assay has been designed using a cellular chip by combining a collagen gel embedded cell culture technique with scanning electrochemical microscopy-enzyme linked immunosorbent assay (SECM-ELISA). An array of cell-collagen gel mixture (2 μL) was spotted on an antibody-coated chip and incubated for 0.5-24 h. The very small trace amounts of cytokines produced by the activated leukocytes on the chip were effectively entrapped within the collagen gel matrix, and these were collected with the immobilized antibodies on the chip. The chip was further treated with horseradish peroxidase (HRP)-labeled antibodies via the sandwich method after removing the cell-collagen gel spots from the chip. Scanning electrochemical microscopy (SECM) was used to quantitatively evaluate the cytokines from the activated leukocytes produced on the chip, and the SECM images were obtained to visualize the position and concentration of IL-1β secreted from THP-1 and HL-60 cell lines at concentration levels of 10-350 pg mL−1. Based on the chemiluminescence method, the sensitivity of the cytokine assay system in combination with SECM-ELISA is comparable to that of the marketed cytokine assay kit; further, the sample volume required for a single assay is drastically reduced.  相似文献   

14.
Wang L  Zhu J  Deng C  Xing WL  Cheng J 《Lab on a chip》2008,8(6):872-878
Cell migration is crucial in many physiological and pathological processes including embryonic development, immune response and cancer metastasis. Traditional methods for cell migration detection such as wound healing assay usually involve physical scraping of a cell monolayer followed by an optical observation of cell movement. However, these methods require hand-operation with low repeatability. Moreover, it's a qualitative observation not a quantitative measurement, which is hard to scale up to a high-throughput manner. In this article, a novel and reliable on-chip cell migration detection method integrating surface chemical modification of gold electrodes using self-assembled monolayers (SAMs) and real-time cellular impedance sensing is presented. The SAMs are used to inhibit cell adherence forming an area devoid of cells, which could effectively mimic wounds in a cell monolayer. After a DC electrical signal was applied, the SAMs were desorbed from the electrodes and cells started to migrate. The process of cell migration was monitored by real-time impedance sensing. This demonstrates the first occurrence of integrating cellular impedance sensing and wound-forming with SAMs, which makes cell migration assay being real-time, quantitative and fully automatic. We believe this method could be used for high-throughput anti-migratory drug screening and drug discovery.  相似文献   

15.
A novel quantum dots (QDs) ECL biosensor for the detection of lysozyme was developed. Lysozyme was first incubated with probes immobilized at Au electrode in order to form the aptamer-lysozyme bioaffinity complexes. And the free probes were hybridized with the 5′-biotin modified cDNA oligonucleotides to form double-stranded DNA (ds-DNA) oligonucleotides. Avidin-QDs were bound to these hybridized cDNA through the biotin-avidin-system. The ECL signal of the biosensor was responsive to the amount of QDs bonded to the cDNA oligonucleotides, which was indirectly inverse proportional to the combined target protein.  相似文献   

16.
The difficulties of determining gold in rocks and ores are due to two causes: low gold concentrations in rocks (Clark 1 to 4·10−7%), and non-uniform distribution of gold in ores. A method is proposed which is based on neutron activation of the lead alloy obtained by cupel melting in the procedure of determining gold by cupel assay. Samples of 50 to 100 g are used for cupel melting. Such large samples guarantee their representativeness. Discs of 2 to 3 g are cut from the lead alloy block and activated in a neutron flux of 1011 to 1013 n·cm−2 sec−1. The gold content is determined from the photopeak of198Au using a standard for comparison. The sensitivity of the method is 0.02 g/metric ton, its accuracy at a gold content in the order of 1.0 g/metric ton is 10% relative. The method is distinguished by the fact that it is fast and requires little labour.  相似文献   

17.
The relaxation of long-lived states (LLS) corresponds to the slow return to statistical thermal equilibrium between symmetric and antisymmetric proton spin states. This process is remarkably sensitive to the presence of external spins and can be used to obtain information about partial unfolding of proteins. We detected the appearance of a destabilized conformer of ubiquitin when urea is added to the protein in its native state. This conformer shows increased mobility in the C-terminus, which significantly extends the lifetimes of proton LLS magnetisation in Ser-65. These changes could not be detected by conventional measurements of T(1) and T(2) relaxation times of protons, and would hardly be sensed by carbon-13 or nitrogen-15 relaxation measurements. Conformers with similar dynamic and structural features, as revealed by LLS relaxation times, could be observed, in the absence of urea, in two ubiquitin mutants, L67S and L69S.  相似文献   

18.
A specific, accurate and precise high-performance liquid chromatographic assay was developed for the determination of riluzole, a drug used to treat patients with amyotrophic lateral sclerosis. Samples were treated by extraction with dichloromethane followed by reversed-phase chromatography with ultraviolet detection at 260 nm. Preset validation criteria were met from 20 to 2000 ng/mL with a linear response curve. Extraction recovery of riluzole was 65-76%. The accuracy of the method was 102-103%. Intra- and inter-day coefficients of variation were in the ranges 2.8-4.9% and 1.8-9.7%. A detection limit of 5 ng/mL was found. Determination of concentrations in serum and plasma resulted in similar results below 500 ng/mL. At higher values a matrix effect cannot be excluded. This presented method can be used to monitor plasma or serum levels in ALS patients treated with riluzole.  相似文献   

19.
Compelling evidence has indicated the vital role of lysine-specific demethylase 4 A (KDM4A), hypoxia-inducible factor-1α (HIF1α) and the mechanistic target of rapamycin (mTOR) signaling pathway in nasopharyngeal carcinoma (NPC). Therefore, we aimed to investigate whether KDM4A affects NPC progression by regulating the HIF1α/DDIT4/mTOR signaling pathway. First, NPC and adjacent tissue samples were collected, and KDM4A protein expression was examined by immunohistochemistry. Then, the interactions among KDM4A, HIF1α and DDIT4 were assessed. Gain- and loss-of-function approaches were used to alter KDM4A, HIF1α and DDIT4 expression in NPC cells. The mechanism of KDM4A in NPC was evaluated both in vivo and in vitro via RT-qPCR, Western blot analysis, MTT assay, Transwell assay, flow cytometry and tumor formation experiments. KDM4A, HIF1α, and DDIT4 were highly expressed in NPC tissues and cells. Mechanistically, KDM4A inhibited the enrichment of histone H3 lysine 9 trimethylation (H3K9me3) in the HIF1α promoter region and thus inhibited the methylation of HIF1α to promote HIF1α expression, thus upregulating DDIT4 and activating the mTOR signaling pathway. Overexpression of KDM4A, HIF1α, or DDIT4 or activation of the mTOR signaling pathway promoted SUNE1 cell proliferation, migration, and invasion but inhibited apoptosis. KDM4A silencing blocked the mTOR signaling pathway by inhibiting the HIF1α/DDIT4 axis to inhibit the growth of SUNE1 cells in vivo. Collectively, KDM4A silencing could inhibit NPC progression by blocking the activation of the HIF1α/DDIT4/mTOR signaling pathway by increasing H3K9me3, highlighting a promising therapeutic target for NPC.Subject terms: Oncogenes, Cancer  相似文献   

20.
Here we present a facile method to fabricate microporous hydrogel scaffolds that can be functionalized with a chemokine gradient. These scaffolds allow studying cellular responses in a 3D environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号