首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesteric liquid crystal (CLC) microcapsules for application in image storage media can be obtained via a diffusion-controlled polymerization method (DPM). To improve the swelling of the CLC seed particle, in poly(methylmethacrylate) (PMMA), a polymerizable acrylate based on a cholesterol moiety was synthesized and copolymerized with MMA to prepare the seed particle. As a result, monodispersed and CLC core/shell-structured microcapsules may be obtained. The resulting CLC microcapsules selectively, absorbed visible light at around 660 nm, and so appeared blue in the mesophase. Polymer dispersed cholesteric liquid crystal (PDCLC) cells were prepared using the CLC microcapsules, and were used as an image storage medium in reversible writing/erasing experiments.  相似文献   

2.
It is well-known that cholesteric liquid crystals have an optical property, selective reflection, due to changes in the pitch of their helical structure. This unique property of cholesteric liquid crystals can be used to attain a visual sensing system showing color changes as the detection signal. In this paper, we report a visual sensing membrane comprising cholesteric liquid crystals, in which a 15-crown-5 derivative was incorporated as ion recognizing sites, for K+ in aqueous solution. The resulting CLC membrane showed a shift of the reflection peak sensitive to K+ in water. We have also designed polymer-dispersed liquid crystal membranes that showed ion-selective reflection peak shifts with improved response time.  相似文献   

3.
A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.  相似文献   

4.
Luecha J  Hsiao A  Brodsky S  Liu GL  Kokini JL 《Lab on a chip》2011,11(20):3419-3425
An alternative green microfluidic device made of zein, a prolamin of corn, can be utilized as a disposable environmentally friendly microchip especially in agriculture applications. Using standard soft lithography and stereo lithography techniques, we fabricated thin zein films with microfluidic chambers and channels. These were bonded to both a glass slide and another zein film. The zein film with microfluidic features bonds irreversibly with other surfaces by vapor-deposition of ethanol to create an adhesive layer resulting in very little or no trapped air and small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design that showed no leakage under high hydraulic pressure. Zein-glass microfluidic devices with serpentine mixing design showed successful fluid manipulation as a concentration gradient of Rhodamine B solution was generated. The ease of fabrication and bonding and the flexibility and moldability of zein offer attractive possibilities for microfluidic device design and manufacturing. These devices can include several unit operations with mixing being one of the most commonly used. The zein-based microfluidic devices, made entirely from a biopolymer from agricultural origin, offer alternative environmentally friendly material choices that are less dependent on limited petroleum based polymer resources.  相似文献   

5.
A responsive hydrogen-bonded cholesteric liquid crystal polymer (CLCP) film with controlled porosity was fabricated as an optical sensor to distinguish between methanol and ethanol in alcohol solutions. To facilitate responding the alcohols, porosity was generated by removing the nonreactive liquid crystal agent, and the hydrogen bridges of CLCP were broken. The sensitivities of CLCPs to ethanol and methanol were obtained by monitoring the wavelength shifts of the transmission spectrum at different alcohol concentrations and ratios of methanol/ethanol. Changes in the central wavelength of the CLCP network transmission spectrum allowed the methanol–ethanol ratio to be discriminated. A linear relationship between wavelength shift of CLCP networks and alcohol concentration was obtained experimentally, and the sensor characteristics were explored. The sensitivities of the CLCPs were 1.35 and 0.18 nm/% to ethanol and methanol, respectively. The sensing sensitivity of cholesteric networks to alcohol molecules increased as the methanol–ethanol ratio declined. Therefore, CLCP could act as a stimuli-responsive material to distinguish the concentrations of acetone and ethanol in mixed solutions. Furthermore, the impact of UV intensity for curing a CLC mixture on the sensing sensitivity to the different alcohol concentrations was also studied. The higher UV intensity could enhance the sensitivity to alcohol molecules and distinguishing ability between methanol and ethanol.  相似文献   

6.
韩国志  朱沈  吴生蓉  庞峰飞 《化学学报》2012,70(17):1827-1830
将胆甾相液晶填充进胶体晶体内部空隙, 通过胆甾相液晶与胶体晶体的耦合, 构建了一种新型可调制液晶光子晶体. 填充于胶体晶体内部的胆甾相液晶织构呈现典型的手性近晶相(S)特征. 由于胆甾相液晶具有特定的选择性反射, 当胶体晶体的带隙处于胆甾相液晶的反射波长范围之内, 则随着温度的改变, 胶体晶体的带隙与胆甾相液晶的带隙同时发生蓝移. 在一定温度条件下, 胆甾相液晶的带隙将与胶体晶体的带隙发生耦合, 实现了光子晶体带隙在单峰与双峰之间的可逆切换.  相似文献   

7.
Constructing and tuning self‐organized three‐dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self‐organized, phototunable 3D photonic superstructure from monodisperse droplets of one‐dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid‐crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions.  相似文献   

8.
Y Liu  D Cheng  IH Lin  NL Abbott  H Jiang 《Lab on a chip》2012,12(19):3746-3753
Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A(2) (PLA(2)).  相似文献   

9.
Wu CY  Liao WH  Tung YC 《Lab on a chip》2011,11(10):1740-1746
This paper reports a novel pressure sensor with an electrical readout based on electrofluidic circuits constructed by ionic liquid (IL)-filled microfluidic channels. The developed pressure sensor can be seamlessly fabricated into polydimethylsiloxane (PDMS) microfluidic systems using the well-developed multilayer soft lithography (MSL) technique without additional assembly or sophisticated cleanroom microfabrication processes. Therefore, the device can be easily scaled up and is fully disposable. The pressure sensing is achieved by measuring the pressure-induced electrical resistance variation of the constructed electrofluidic resistor. In addition, an electrofluidic Wheatstone bridge circuit is designed for accurate and stable resistance measurements. The pressure sensor is characterized using pressurized nitrogen gas and various liquids which flow into the microfluidic channels. The experimental results demonstrate the great long-term stability (more than a week), temperature stability (up to 100 °C), and linear characteristics of the developed pressure sensing scheme. Consequently, the integrated microfluidic pressure sensor developed in this paper is promising for better monitoring and for characterizing the flow conditions and liquid properties inside the PDMS microfluidic systems in an easier manner for various lab on a chip applications.  相似文献   

10.
Recent advance in liquid crystal (LqC) based immunoassays enables label-free detection of antibody, but manual preparation of LqC cells and injection of LqC are required. In this work, we developed a new format of LqC-based immunoassay which is hosted in a microfluidic device. In this format, the orientations of LqC are strongly influenced by four channel walls surrounding the LqC. When the aspect ratio (depth/width) of the channel is smaller than 0.38, LqC orients homeotropically inside the microchannel and appears dark. After antigens bind to immobilized antibodies on the channel walls, a shift of the LqC appearance from dark to bright (due to the disruption of LqC orientation) can be visualized directly. To streamline the immunoassay process, a tubing cartridge loaded with a sample solution, washing buffers and a plug of LqC is connected to the microfluidic device. By using pressure-driven flow, the cartridge allows antigen/antibody binding, washing and optical detection to be accomplished in a sequential order. We demonstrate that this microfluidic immunoassay is able to detect anti-rabbit IgG with a naked-eye detection limit down to 1 μg mL−1. This new format of immunoassay provides a simple and robust approach to perform LqC-based label-free immunodetection in microfluidic devices.  相似文献   

11.
A cellulose derivative/liquid crystal composite‐type electro‐optical cell using a commercial cholesteric liquid crystal (CLC) was investigated. The electro‐optical properties of the system were examined, i.e. the dependence on applied voltage of the reflected wavelength and the minimum and maximum transmissions. A thin film of the CLC was dispersed with a cross‐linked cellulose film of 25 µm thickness. In the voltage dependence of the reflected wavelength it was verified that there is a hysteresis in the reflected wavelength. The variation of the reflected wavelength with temperature was also determined. The results are analysed in the framework of similar systems described in the literature for CLC dispersed in a polymer matrix.  相似文献   

12.
微流控芯片操纵传输及实时监测单细胞量子释放   总被引:2,自引:0,他引:2  
微流控芯片技术用于细胞生化分析已引起了广泛关注.Harrison等首次在微流控芯片上对细胞群体进行操纵、传输及反应.yang等在微流控芯片上操纵细胞群体的排列,并用荧光检测细胞群体摄取钙的反应.至今还未见到微流控芯片对单个细胞进行操纵传输、定位及实时监测的报道.单细胞受激释放的监测对探索生物体神经传导具有重要意义.  相似文献   

13.
We demonstrate a rapid fabrication procedure for solvent-resistant microfluidic devices based on the perfluoropolyether (PFPE) SIFEL. We carefully modified the poly-dimethylsiloxane (PDMS) micromolding procedure, such that it can still be executed using the standard facilities for PDMS devices. Most importantly, devices with a thin SIFEL layer for the patterned channels and a PDMS support layer on top offered the best of two worlds in terms of chemical and mechanical stability during fabrication and use. Tests revealed that these devices overcome two important drawbacks of PDMS devices: (i) incompatibility with almost all non-aqueous solvents, and (ii) leaching of oligomer into solution. The potential of our device is shown by performing a relevant organic synthesis reaction with aggressive reactants and solvents. PFPE-PDMS devices will greatly expand the application window of micromolded devices.  相似文献   

14.
Polyimide-based microfluidic devices   总被引:1,自引:0,他引:1  
This paper describes the development of polyimide-based microfluidic devices. A layer transfer and lamination technique is used to fabricate flexible microfluidic channels in various shapes and with a wide range of dimensions. High bond strengths can be achieved by cure cycle adaptation and surface treatment of the polyimide layers prior to bonding. The polyimide microchannels can be combined with metallization layers to fabricate electrodes inside and outside channels. The resulting devices can be used for flexible fluidic and electrical connectors, implantable fluid delivery devices, microelectrodes with embedded fluidic channels, chip-based flow cytometry and for a great variety of other applications in medical, chemical or biological research.  相似文献   

15.
VanDersarl JJ  Xu AM  Melosh NA 《Lab on a chip》2011,11(18):3057-3063
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large cell culture areas without fluid flow over the cells. In these devices the cell culture well is divided from a microfluidic channel located directly underneath the chamber by a nanoporous membrane. This configuration requires chemical signals in the microchannel to only diffuse through the thin membrane into large cell culture area, rather than diffuse in from the sides. The spatial chemical pattern within the microfluidic channel was rapidly transferred to the cell culture area with good fidelity through diffusion. The cellular temporal response to a step-function signal showed that dye reached the cell culture surface within 45 s, and achieved a static concentration in under 6 min. Chemical pulses of less than one minute were possible by temporally alternating the signal within the microfluidic channel, enabling rapid flow-free chemical microenvironment control for large cell culture areas.  相似文献   

16.
A microfluidic device is used to generate a complex gradient of diffusible molecules in a static solution. The gradient is precise and steady both in space and in time. This device, made from poly(dimethylsiloxane), consists of three layers. The molecules in reservoirs on the top layer diffuse through the flat middle layer of hydrogel and reach an equilibrium distribution. Microfluidic channels on the bottom layer that are in close contact with the hydrogel contain free solution that has concentration gradients based on the gradient in the gel. The gradient profile in the channel can be designed to have an arbitrary form (within the range of the existing gradient in the hydrogel) by controlling the local direction of the channel at each point.  相似文献   

17.
Y Hanada  K Sugioka  K Midorikawa 《Lab on a chip》2012,12(19):3688-3693
The demand for increased sensitivity in the concentration analysis of biochemical liquids is a crucial issue in the development of lab on a chip and optofluidic devices. We propose a new design for optofluidic devices for performing highly sensitive biochemical liquid assays. This design consists of a microfluidic channel whose internal walls are coated with a polymer and an optical waveguide embedded in photostructurable glass. The microfluidic channel is first formed by three-dimensional femtosecond laser micromachining. The internal walls of the channel are then coated by the dipping method with a polymer that has a lower refractive index than water. Subsequently, the optical waveguide is integrated with the microfluidic channel. The polymer coating on the internal walls permits the probe light, which is introduced by the optical waveguide, to propagate along the inside of the microfluidic channel. This results in a sufficiently long interaction length between the probe light and a liquid sample in the channel and thus significantly improves the sensitivity of absorption measurements. Using the fabricated optofluidic chips, we analyzed protein in bovine serum albumin to concentrations down to 7.5 mM as well as 200 nM glucose-D.  相似文献   

18.
CY Wu  JC Lu  MC Liu  YC Tung 《Lab on a chip》2012,12(20):3943-3951
Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.  相似文献   

19.
Irreversible optical sensing of humidity by a doped cholesteric liquid crystal is achieved by using a thin film of nematic host E7 with a binaphthylorthosilicate ester as dopant (guest). The film changes its color from blue (to green to orange to red) to colorless when exposed to humidity as the dopant is hydrolyzed.  相似文献   

20.
A novel method for the fabrication of paper-based microfluidic diagnostic devices is reported; it consists of selectively hydrophobizing paper using cellulose reactive hydrophobization agents. The hydrophilic–hydrophobic contrast of patterns so created has excellent ability to control capillary penetration of aqueous liquids in paper channels. Incorporating this idea with digital ink jet printing techniques, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and indicator reagents with precision into the microfluidic patterns to form bio-chemical sensing zones within the device. This method thus allows the complete sensor, i.e. channel patterns and the detecting chemistries, to be fabricated only by two printing steps. This fabrication method can be scaled up and adapted to use high speed, high volume and low cost commercial printing technology. Sensors can be fabricated for specific tests, or they can be made as general devices to perform on-demand quantitative analytical tasks by incorporating the required detection chemistries for the required tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号