首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Molecules that reversibly bind DNA and trigger the formation of non-Watson-Crick secondary structures would be useful in the design of dynamic DNA nanostructures and as potential leads for new therapeutic agents. We demonstrate that coralyne, a small crescent-shaped molecule, promotes the formation of a duplex secondary structure from homo-adenine oligonucleotides. AFM studies reveal that the staggered alignment of homo-adenine oligonucleotides upon coralyne binding produces polymers of micrometers in length, but only 2 nm in height. A DNA duplex was also studied that contained eight A.A mismatches between two flanking 7-bp Watson-Crick helices. CD spectra confirm that the multiple A.A mismatches of this duplex bind coralyne in manner similar to that of homo-adenine oligonucleotides. Furthermore, the melting temperature of this hybrid duplex increases by 13 degrees C upon coralyne binding. These observations illustrate that the helical structure of the homo-adenine-coralyne duplex is compatible with the B-form DNA helix.  相似文献   

2.
A pulsed electron paramagnetic resonance (EPR) spectroscopic ruler for oligonucleotides was developed using a series of duplex DNAs. The spin-labeling is accomplished during solid-phase synthesis of the oligonucleotides utilizing a palladium-catalyzed cross-coupling reaction between 5-iodo-2'-deoxyuridine and the rigid spin-label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA). 4-Pulse electron double resonance (PELDOR) was then used to measure the intramolecular spin-spin distances via the dipolar coupling, yielding spin-spin distances of 19.2, 23.3, 34.7, 44.8, and 52.5 A. Employing a full-atom force field with explicit water, molecular dynamic (MD) simulations on the same spin-labeled oligonucleotides in their duplex B-form gave spin-spin distances of 19.6, 21.4, 33.0, 43.3, and 52.5 A, respectively, in very good agreement with the measured distances. This shows that the oligonucleotides adopt a B-form duplex structure also in frozen aqueous buffer solution. It also demonstrates that the combined use of site-directed spin-labeling, PELDOR experiments, and MD simulations can yield a microscopic picture about the overall structure of oligonucleotides. The technique is also applicable to more complex systems, like ribozymes or DNA/RNA-protein complexes, which are difficult to access by NMR or X-ray crystallography.  相似文献   

3.
Molecular complexes such as double-stranded oligonucleotides contain non-covalent bonds that are difficult to maintain in the MALDI experiment. Quantifiers are introduced in order to evaluate, summarize, and compare spectra from experiments in which additives are used to stabilize duplex oligonucleotides. Compounds known to complex with and stabilize duplex molecules can be useful as additives in MALDI. Spermine and methylene blue, present at concentrations similar to the matrix, are detected, bound to the duplex. When peptides are used as additives, the duplex is stabilized when the peptide is present at an amount less than that of the duplex.  相似文献   

4.
Liquid chromatography/mass spectrometry (LC/MS) was used as a method for analyzing the metabolites of a model short interfering RNA (siRNA) duplex. The model siRNA duplex incorporated oligonucleotide stabilizing and protecting chemistries as these have been shown to increase the half-life of oligonucleotides. Two complementary 23 nucleotide single strands were joined to form the duplex. The intact duplex was analyzed using ion-pair reversed-phase chromatography coupled to electrospray ionization mass spectrometry (ESI-MS). The method used a hexafluoroisopropanol/triethylamine ion-pairing buffer with a methanol gradient to separate single-stranded oligonucleotide components from the duplex. This buffer system with ESI also preserved the duplex in the gas phase for analysis by a triple quadrupole mass spectrometer. Using this methodology, in vitro and in vivo metabolites from urine and rabbit ocular vitreous humor were determined and a pattern of duplex siRNA degradation was established. The masses of the metabolites were determined by ESI-MS and used with the known sequence of the siRNA duplex to identify the metabolites. Over the time course of the metabolism experiments it was shown that the breakdown products of the siRNA are consistent with the nuclease protection given by chemical modifications and that the duplex structure adds additional stability compared to the single strands alone. This study demonstrates that the ability of LC/MS to analyze duplex oligonucleotides has unique benefits for the study of siRNA metabolism.  相似文献   

5.
The noncovalent complex formed in solution between minor groove binding molecules and an oligonucleotide duplex was investigated by electrospray ionization-mass spectrometry (ESI-MS). The oligonucleotide duplex formed between two sequence-specific 14-base pair oligonucleotides was observed intact by ESI-MS and in relatively high abundance compared to the individual single-stranded components. Only sequence-specific A:B duplexes were observed, with no evidence of random nonspecific aggregation (i.e., A:A or B:B) occurring under the conditions utilized. Due to the different molecular weights of the two 14-base pair oligonucleotides, unambiguous determination of each oligonucleotide and the sequence-specific duplex was confirmed through their detection at unique mass-to-charge ratios. The noncovalent complexes formed between the self-complementary 5′-dCGCAAATTTGCG-3′ oligonucleotide and three minor groove binding molecules (distamycin A, pentamidine, and Hoechst 33258) were also observed. Variation of several electrospray ionization interface parameters as well as collision-induced dissociation methods were utilized to characterize the nature and stability of the noncovalent complexes. The noncovalent complexes upon collisional activation dissociated into single-stranded oligonucleotides and single-stranded oligonucleotides associated with a minor groove binding molecule. ESI-MS shows potential for the study of small molecule-oligonucleotide duplex interactions and determination of small molecule binding stoichiometry.  相似文献   

6.
Double-stranded DNA (dsDNA) templates can hybridize to and accelerate cleavage of oligonucleotides containing a P3'→N5' phosphoramidate (P-N) linkage. This dsDNA-templated cleavage of P-N linkages could be due to conformational strain placed on the linkage upon triplex formation. To determine whether duplex formation also induced conformational strain, we examined the reactivity of the oligonucleotides with a P-N linkage in the presence of single-stranded templates, and compared these reactions to those with dsDNA templates. P-N oligonucleotides that are cleaved upon duplex formation could be used as probes to detect single-stranded nucleic acids.  相似文献   

7.
The ferrocenyl-nucleoside, 5-ethynylferrocenyl-2'-deoxycytidine (1) has been prepared by Pd-catalyzed cross-coupling between ethynylferrocene and 5-iodo-2'-deoxycytidine and incorporated into oligonucleotides by using automated solid-phase synthesis at both silica supports (CPG) and modified single-crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl-nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl-modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12-mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid-phase methods were also used to synthesise 12-mer ferrocenyl-containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface-bound ferrocenyl-DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene-phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO(4), a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation-induced changes in ferrocene-phosphate distances.  相似文献   

8.
BACKGROUND: Synthetic nucleic acid analogues with a conformationally restricted sugar-phosphate backbone are widely used in antisense strategies for biomedical and biochemical applications. The modified backbone protects the oligonucleotides against degradation within the living cell, which allows them to form stable duplexes with sequences in target mRNAs with the aim of arresting their translation. The biologically most active antisense oligonucleotides also trigger cleavage of the target RNA through activation of endogenous RNase H. Systematic studies of synthetic oligonucleotides have also been conducted to delineate the origin of the chirality of DNA and RNA that are both composed of D-nucleosides. RESULTS: Hexitol nucleic acids (HNA) are the first example of oligonucleotides with a six-membered carbohydrate moiety that can bind strongly and selectively to complementary RNA oligomers. We present the first high resolution nuclear magnetic resonance structure of a HNA oligomer bound to a complementary RNA strand. The HNA-RNA complex forms an anti-parallel heteroduplex and adopts a helical conformation that belongs to the A-type family. Possibly, due to the rigidity of the rigid chair conformation of the six-membered ring both the HNA and RNA strand in the duplex are well defined. The observed absence of end-fraying effects also indicate a reduced conformational flexibility of the HNA-RNA duplex compared to canonical dsRNA or an RNA-DNA duplex. CONCLUSIONS: The P-P distance across the minor groove, which is close to A-form, and the rigid conformation of the HNA-RNA complex, explain its resistance towards degradation by Rnase H. The A-form character of the HNA-RNA duplex and the reduced flexibility of the HNA strand is possibly responsible for the stereoselectivity of HNA templates in non-enzymatic replication of oligonucleotides, supporting the theory that nucleosides with six-membered rings could have existed at some stage in molecular evolution.  相似文献   

9.
[structure: see text] Oligonucleotides with a novel 2'-O-[2-(guanidinium)ethyl] (2'-O-GE) modification have been synthesized using a novel protecting group strategy for the guanidinium group. This modification enhances the binding affinity of oligonucleotides to RNA as well as duplex DNA (DeltaT(m) 3.2 degrees C per modification). The 2'-O-GE modified oligonucleotides exhibited exceptional resistance to nuclease degradation. The crystal structure of a palindromic duplex formed by a DNA oligonucleotide with a single 2'-O-GE modification was solved at 1.16 A resolution.  相似文献   

10.
The intrinsic (gas-phase) stabilities of duplex, self-complementary oligonucleotides were measured in a relative way by subjecting the duplex precursor ions to increasing amounts of collision energy during the collisional-activated decomposition (CAD) events in an ion-trap mass spectrometer. The results are displayed as a dissociation profile, an s-shaped curve that shows the dependence of the relative abundance of the duplex on the applied collision energy. The total number of charges, the total number of base pairs, and the location of the high proton-affinity bases (i.e., G and C) are the main factors that affect the intrinsic stability of the duplex oligonucleotides. If the charge state is the same, the stability, as measured as a half-wave collision energy, E1/2, correlates well with the total number of H bonds for the duplex. The intrinsic stabilities of noncovalent complexes between duplex oligonucleotide and some DNA-binding drugs were also measured by using the newly developed method. Although duplexes are stabilized in the gas phase when they bind to drug molecules, correlations between gas-phase stabilities and the solution-binding affinities have not yet been obtained. Complexes in which the drug is bound in the minor groove must be joined tightly because they tend to dissociate in the gas phase by breaking covalent bonds of the oligonucleotide to give base loss and small sequence-ion formation. Complexes in which the drug is known to favor intercalation dissociate by breaking weak, noncovalent bonds to form single-stranded oligonucleotides although cleavage of covalent bonds of the oligonucleotide also occurs.  相似文献   

11.
3-(2'-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M1dG) is the major product of the reaction of deoxyguanosine with malondialdehyde (MDA). M1dG blocks replication by DNA polymerases in vitro and is mutagenic in vivo. M1dG reacts with hydroxide to form the N2-(3-oxo-1-propenyl)deoxyguanosine anion (N2OPdG-). This reaction is pH-dependent and reverses under neutral and acidic conditions to form M1dG. Here we describe the kinetics and mechanism of the ring-closure reaction in both the nucleoside and oligonucleotides. Kinetic analysis of absorbance and fluorescence changes demonstrates that ring-closure is biphasic, leading to the rapid formation of an intermediate that slowly converts to M1dG in a general-acid-catalyzed reaction. The dependence of the rate of the rapid phase on pH reveals the pKa for protonated N2OPdG is 6.9. One-dimensional 1H NMR and DQF-COSY experiments identified two distinct intermediates, N2OPdG-H and 8-hydroxy-6,7-propenodeoxyguanosine (HO-Prene-dG), that are formed upon acidification of N2OPdG-. Characterization of ring-closure in single-stranded and in melted duplex oligonucleotides shows M1dG formation is also acid-catalyzed in single-stranded oligonucleotides and that the denaturation of an oligonucleotide duplex enhances ring-closure. This work details the complexity of ring-closure in the nucleoside and oligonucleotides and provides new insight into the role of duplex DNA in catalyzing ring-opening and ring-closing of M1dG and N2OPdG.  相似文献   

12.
A 2'-O-methyluridylic acid derivative 3 having a cyclic structure linked between the 5-position of the uracil residue and the 5'-phosphate group was synthesized. The NMR analysis suggests that this cyclouridylic acid derivative has exclusively the C3'-endo conformation that is in favor of duplex formation with RNA. Two oligonucleotides ?pc3Um(pT)(9) and pc3Um(pU)(9) incorporating this cyclouridylic acid unit at the 5'-terminal site were synthesized by using the fully protected cyclouridylic acid 3'-phosphoramidite derivative 11 in the solid-phase synthesis. To examine the actual effect of this cyclic structure on the thermal stability of duplexes between the modified oligonucleotides and their complementary oligonucleotides, two oligonucleotides ?pUm(pT)(9) and pUm(pU)(9) having an acyclic structure were also synthesized. As the complementary oligonucleotides, dA(pdA)(9) and A(pA)(9) were used for T(m) experiments with these 5'-terminal modified oligonucleotides. The T(m) values of all the possible duplexes were measured. These results clearly show that the duplex of pc3Um(pT)(9)-A(pA)(9) has a higher T(m) value by 5.5 degrees C than that of A(pA)(9)-T(pT)(9). This is rather significant compared with all other cases. Moreover, the T(m) value of pc3Um(pT)(9)-A(pA)(9) is 4.5 degrees C higher than that of pUm(pT)(9)-A(pA)(9). This result suggests that the cyclic structure can considerably contribute to stabilization of the duplex only in the case of the modified oligomer (DNA) and decaadenylate (RNA).  相似文献   

13.
Intramolecular circularization of DNA oligonucleotides was accomplished by incorporation of alkyne‐modified photolabile nucleosides into DNA sequences, followed by a CuI‐catalyzed alkyne–azide cycloaddition with bis‐azido linker molecules. We determined a range of ring sizes, in which the caged circular oligonucleotides exhibit superior duplex destabilizing properties. Specific binding of a full‐length 90 nt C10 aptamer recognizing human Burkitt's lymphoma cells was then temporarily inhibited by locking the aptamer in a bicircularized structure. Irradiation restored the native aptamer conformation resulting in efficient cell binding and uptake. The photo‐tether strategy presented here provides a robust and versatile tool for the light‐activation of longer functional oligonucleotides, noteworthy without prior knowledge on the structure and the importance of specific nucleotides within a DNA aptamer.  相似文献   

14.
Introduction of alpha,beta-D-CNA featuring canonical values of the torsional angles alpha and beta within oligonucleotides leads to an overall stabilization and improved rigidity of the duplex DNA as demonstrated by UV experiments, circular dichroism and corroborated by molecular dynamics simulations.  相似文献   

15.
Intramolecular circularization of DNA oligonucleotides was accomplished by incorporation of alkyne‐modified photolabile nucleosides into DNA sequences, followed by a CuI‐catalyzed alkyne–azide cycloaddition with bis‐azido linker molecules. We determined a range of ring sizes, in which the caged circular oligonucleotides exhibit superior duplex destabilizing properties. Specific binding of a full‐length 90 nt C10 aptamer recognizing human Burkitt's lymphoma cells was then temporarily inhibited by locking the aptamer in a bicircularized structure. Irradiation restored the native aptamer conformation resulting in efficient cell binding and uptake. The photo‐tether strategy presented here provides a robust and versatile tool for the light‐activation of longer functional oligonucleotides, noteworthy without prior knowledge on the structure and the importance of specific nucleotides within a DNA aptamer.  相似文献   

16.
The ferrocenyl‐nucleoside, 5‐ethynylferrocenyl‐2′‐deoxycytidine ( 1 ) has been prepared by Pd‐catalyzed cross‐coupling between ethynylferrocene and 5‐iodo‐2′‐deoxycytidine and incorporated into oligonucleotides by using automated solid‐phase synthesis at both silica supports (CPG) and modified single‐crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl‐nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl‐modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12‐mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid‐phase methods were also used to synthesise 12‐mer ferrocenyl‐containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface‐bound ferrocenyl‐DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene–phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO4, a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation‐induced changes in ferrocene–phosphate distances.  相似文献   

17.
Oligodeoxynucleotides containing 2′-C-branched nucleosides with an amide or nitrile appended to either a one or two carbon alkyl chain have been synthesised. The phosphoramidites of the 2′-C-modified nucleosides were prepared and incorporated into the oligonucleotides using automated DNA synthesis. The duplex stability with complementary RNA and DNA was measured by UV melting experiments, in order to assess whether the amide/nitrile function could induce any duplex stability without the presence of the 2′-oxygen. The duplex stabilities of the oligonucleotides containing the 2′-C-modifications were decreased in the absence of the 2′-oxygen.  相似文献   

18.
We report on the characterization of a novel hetero‐selective DNA‐like duplex of pyrene and anthraquinone pseudo base pairs. The pyrene/anthraquinone pairs showed excellent selectivity in hetero‐recognition and even trimers were found to form a hetero‐duplex. Pyrene and anthraquinone moieties were tethered on acyclic D ‐threoninol linkers and linked to adjacent residues by using standard phosphoramidite chemistry. When pyrene and anthraquinone were incorporated at pairing positions in complementary strands of natural DNA oligonucleotides, the duplex was stabilized significantly. Moreover, a pyrene hexamer and an anthraquinone hexamer formed a stable artificial hetero‐duplex without the assistance of natural base pairs. The pyrene/anthraquinone pair was so stable that even trimers formed a hetero‐duplex under conditions in which natural DNA strands of three residues do not.  相似文献   

19.
In an equimolar ratio the human telomeric oligonucleotides d[AGGG(TTAGGG)(3)] and d[(CCCTAA)(3)CCCT] formed mixed structures of duplex and tetraplex in bis(2-ethylhexyl)sulfosuccinate reverse micelles; only the duplex was observed in aqueous buffer. This finding suggests that heterogeneous confined media in the cell nucleus might induce a significant fraction of the telomeric region of genomic DNA to adopt non-canonical tetraplex structure.  相似文献   

20.
Synthesis of 1,6- and 1,8-triazolylpyrenes and their incorporation into oligonucleotides is described. In hybrids, triazolylpyrenes adopt interstrand stacking interactions. Exciton coupling is observed for the duplex containing a pair of the 1,6-isomer indicating a well-defined helical arrangement of the triazolylpyrene building blocks. Triazole substitution results in pronounced red-shifts of monomer as well as excimer fluorescence. Furthermore, quantum yields of the formed excimers are remarkably high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号