首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five new CuII complexes of general formula [Cu2(Rdtc)tpmc](ClO4)3, (1)–(5), where tpmc and Rdtc refer to N,N,N,N-tetrakis(2-pyridylmethyl)-1,4,8,11-teraazacyclotetradecane and piperidine- (Pipdtc), 4-morpholine- (Morphdtc), 4-thiomorpholine- (Timdtc), piperazine- (Pzdtc) or N-methylpiperazine- (N-Mepzdtc) dithiocarbamates, respectively, have been prepared. Elemental analyses, conductometric and magnetic measurements, u.v./vis, i.r., e.p.r. and mass spectroscopy have been employed to characterize them. The complexes adopt an exo coordination of CuII ions and tpmc. The dithiocarbamate ion joins both the sulphur and the copper atoms acting as a bridging ligand The presence of different heteroatoms in the piperidine ring influences the (C=N) and (C=S) vibrations which decrease in the order of the complexes: Pipdtc>N-Mepipdtc>Pzdtc>Morphdtc>Timdtc ligands. Attention has been paid to the detailed mechanism of the mass spectral fragmentation of the complexes. The g eff factors of the complexes have been also estimated by e.p.r. spectra. Finally, the complexes obtained demonstrate microbiologycal activity against some bacteria.  相似文献   

2.
The growth of Au on the stable, high-index Si(5512) surface has been studied using scanning tunneling microscopy (STM). At very low coverages and moderate annealing temperatures (0.1ML, 400–500°C), Au appears to decorate the underlying Si rows and form an array of rows that maintains the underlying (5512) periodicity of 5.4nm. For higher annealing temperatures and coverages, however, Au causes faceting to a number of nearby planes. The two primary facets formed at lower (0.15ML) and higher (0.5–2ML) coverages are the (337) and (225) planes, which are tilted 0.7° down [towards (111)] and 1.1° up from (5512), respectively. Both orientations are in fact subunits of the (5512) unit cell, so their presence is not surprising. In addition to these facets, two types of sawtooth morphologies composed of planes oriented further from (5512) are found at very high annealing temperatures (800–900°C). These include (113)+(7715) planes at very low coverage (0.05ml) and (113)+(5511) planes at higher coverage (1ML), where (113) is tilted up by 5.3° and (7715) and (5511) are tilted down by 2.9° and 2.2°, respectively. Au adsorption on Si(5512) therefore results in the formation of five possible facet planes: (113), (225), (337), (5511), and (7715).  相似文献   

3.
Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A Tl-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25mmø) by filtration under suction using a glass funnel with an effective filtration area of 0.64cm2. As a result, a circular thin layer of the resin phase with a diameter of 9mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mmø hole to put it into a sample cup containing 100µL of 10mM HNO3 containing 0.5mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0–4ng of Tl in 100mL of a sample solution. The detection limit obtained by 3 method was 0.19ng. The proposed method was applied to the determination of Tl in natural water samples. The results showed the concentration of Tl in seawater was 12.1±1.8pgmL–1 for the calibration graph method and 12.6±1.4pgmL–1 for the standard addition method. A snowmelt sample contained 20.7±1.0pgmL–1 of Tl.  相似文献   

4.
A novel nano-TiO2 polymer modified glassy carbon (GC) electrode was developed for the determination of an organophosphorous pesticide, fenitrothion (-NO2), in citrate buffer solution. The electrochemical behavior of fenitrothion was characterized by using cyclic voltammetry. An irreversible form, -NO2, was transformed into a reversible redox couple (-NHOH/-NO), and it can be used to determine trace fenitrothion by square wave voltammetry. The experimental parameters, such as film thickness, pH value, accumulation potential and time were optimized. Interestingly, a cyclic voltammetric scan was observed to be more effective than a constant potential for the accumulation of fenitrothion. A linear response over a fenitrothion concentration of 2.5×10–8 to 1.0×10–5M was exhibited, with a detection limit of 1.0×10–8M (S/N=3). The high sensitivity and selectivity of this film electrode was demonstrated by its practical application to the determination of trace amounts of fenitrothion in lake water and apple samples.  相似文献   

5.
A simple and novel electrogenerated chemiluminescence (ECL) method for the determination of sulfite has been developed based on the energy transfer ECL process. It was found that a weak ECL signal of sulfite was electrochemically generated on a platinum electrode in neutral aqueous solution. The signal was strongly enhanced by rhodamine B as an energy receptor and further enhanced by the neutral surfactant Tween 80. In 0.10M phosphate buffer solution (pH=7.5) containing 2.0×10–6gmL–1 rhodamine B and 0.4% (v/v) Tween 80, the ECL response to the concentration of sulfite at a potential of 0.82V was linear over a range of 1.0×10–7gmL–1 to 8.0×10–6gmL–1, and the detection limit was 5×10–8gmL–1. The relative standard deviation (n=11, 1.0×10–6gmL–1) was 3.8%. The proposed method has been successfully applied to the determination of sulfite in pharmaceutical injections and white sugar samples.  相似文献   

6.
A carbon black microelectrode modified by -MnO2 has been prepared. The electrocatalytical oxidation of ascorbic acid (AA) at this microelectrode was investigated. The 2nd-order linear scan voltammograms of AA are recorded from –0.5 to 0.5V (vs. SCE). The relationship between the oxidation peak current of AA and its concentration in the range of 1.0×10–64.0×10–3molL–1 is linear. The detection limit (3) was found to be 6.0×10–7molL–1. Also, the determination of AA in samples is evaluated, and the results are satisfactory.  相似文献   

7.
Solvent sublation was studied as a method of separating and pre-concentrating traces of Zn(II), Cd(II) and Cu(II) as diphenylthiocarbazone (dithizone) complexes for their determination. The experimental conditions, such as pH of solution, amount of dithizone as ligand, stirring time, gas flow rate and flotation time, were optimized. Different non-ionic surfactants and types of organic solvents were optimized for efficient sublation. The analyte ions in a 350mL sample were complexed as metal-dithizone complexes by adding 10mL of 0.084% dithizone, 0.5mL of 0.1% nonylphenol polyoxyethylene ether (NP) and 10mL of pH 4.3 potassium hydrogen phthalate-sodium hydroxide buffer solution. The solution was stirred with a mechanical stirrer for 30min. It was transferred to a flotation cell, and the complexes were floated by bubbling air and extracted into 10mL of methylisobutyl ketone (MIBK) on the surface of the aqueous solution. The analytes in the organic phase were determined by flame atomic absorption spectrometry (F-AAS) for Zn(II) and by graphite furnace atomic absorption spectrometry (GF-AAS) for Cd(II) and Cu(II). The proposed method was applied to determine Zn(II), Cd(II) and Cu(II) in real water samples; the enrichment factor was more than 37, the RSD was less than 4.26%, recoveries ranged from 92.7 to 107.3%, and the detection limits were 1.0µgL–1 for Zn(II), 0.006µgL–1 for Cd(II) and 0.06µgL–1 for Cu(II). The results obtained were satisfactory.  相似文献   

8.
A new electrode based on a complex of chromate ions with bis(acetylacetonato) cadmium(II) as a carrier was developed for detection of chromate in aqueous solution. The electrode exhibited linear response with Nernstian slopes of –28.8±0.5mVper decade for chromate within the concentration range of 2.5×10–6–0.1M. The limit of detection as determined from the intersection of the extrapolated linear segments of the calibration plots was almost 1.0×10–6M. The electrodes exhibited good selectivities for chromate. The response time of the electrode was <25s over the entire concentration range. The electrode can be used in the pH range 8.0–12.0 for chromate. It was used as an indicator electrode in titration with Pb(NO3)2 and for the determination of chromate ion in wastewater samples.  相似文献   

9.
This study aims to investigate the distribution of Na, K, Rb and Cs in human brains (5 individuals, 12 brain parts, mean age: 75 years). Distribution of the trace metals between lipid fraction and brain tissue was investigated in solvent extraction experiments. Determinations were carried out by instrumental neutron activation analysis. The present results show a rather non-homogeneous distribution for Na and a relatively uniform distribution for K, Rb and Cs. The mean concentrations found are 7440µgNag–1 dry weight, 12800µgKg–1, 14µgRbg–1 and 50ngCsg–1. A highly significant positive correlation was found between Rb and Cs. Solvent extraction experiments showed that 19% of Rb and 26% of Cs of the total content is located in lipid fraction.  相似文献   

10.
Nanometer-sized L-cysteine-capped ZnS particles were synthesized by a colloidal aqueous method. The functionalized nanoparticles are water-soluble and suitable for biological applications. In Tris-HCl buffer solution, nucleic acids combine with cysteine-capped nano-ZnS particles by intermolecular forces to form larger nanoparticles. There are two resonance light scattering peaks at 304.5nm and 373.8nm, respectively. The enhanced RLS is related to the concentration of nucleic acids in the range of 0.04 to 1.2µgmL–1 for calf thymus DNA and 0.2 to 1.0µgmL–1 for fish sperm DNA. The detection limits (3) are 19ngmL–1 for calf thymus DNA and 23ngmL–1 for fish sperm DNA, respectively. Four synthetic samples were analyzed satisfactorily.  相似文献   

11.
The kinetics of formation and dissociation reactions of [Ru(CN)5L]3– with a series of heterocyclic ligands were studied in aqueous media. In this presence of an excess of heterocycle, the observed second order rate constants were calculated from the kobs versus [ligand] plot at =0.100m NaClO4. Activation parameters for the formation reactions (H=28±7kJmol–1 and S=140±35JK–1mol–1) are comparable for all systems, indicating a common mechanism. The kinetics of exchange of coordinated heterocycles for 1,3,5-triazine yielded a rate saturation typical of a limiting dissociative mechanism. Activation parameters of the limiting first order specific rate of dissociation reactions were H=85±7kJmol–1 and S=18±4JK–1mol–1. Equilibrium constants were calculated from the second order rates of formation and pseudo-first order rates of dissociation reaction.  相似文献   

12.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The self-assembled electrode shows obvious electrocatalytic activity for the oxidation of epinephrine (EP). In phosphate buffer (pH 7.73), a sensitive oxidation peak was observed at 0.190V with the PCA modified Au electrode. The peak current is proportional to the concentration of EP in the range of 2.0×10–56.0×10–4molL–1 and 5.0×10–6 2.0×10–4molL–1 for cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with the detection limits of 1.8×10–7 and 1.3×10–7molL–1, respectively. The possible reaction mechanism is also discussed. The PCA self-assembled monolayer modified gold electrode is highly stable and can be applied to the determination of EP in practical injection samples. Application is simple, rapid and produces accurate results.  相似文献   

13.
A -mercaptopropionic acid (MPA) self-assembled monolayer modified electrode (MPA/SAM/Au) on a gold electrode has been fabricated. The characterization of the MPA/SAM/Au was investigated using attenuated total reflection-fourier transform infrared (ATR-FTIR) and A.C. impedance. The electrochemical behaviors of p-aminophenol (p-AP) were studied at the MPA/SAM/Au by cyclic voltammetry and semi-derivative voltammetry (SDV) in BR buffer solution. The modified electrode shows excellent electrocatalytic activity for the redox of p-AP and accelerates the electron transfer rate. The diffusion coefficient (D) is 4.55×10–6cm2s–1. The oxidative peak current increases linearly with the concentration of p-AP in the range of 4.0×10–88×10–6molL–1 and 1.0×10–52×10–4molL–1 by square wave voltammetry response, respectively. The detection limit (three times the signal blank/slope) is up to 1.2×10–8molL–1. The modified electrode is able to eliminate the interference of p-benzenediol, o-benzenediol and o-AP at a 40-, 90- or 70-fold concentration of p-AP, and it has been satisfactorily used for the determination of the real sample.  相似文献   

14.
A simple and reliable electrochemical method for the determination of bismuth in water and nickel metal samples using a sodium montmorillonite (SWy-2) modified carbon paste electrode was described. Due to its strong cation-exchange ability and adsorptive characteristics, SWy-2 significantly enhances the sensitivity of determination for Bi3+. Bi3+ is firstly preconcentrated and then reduced on the modified electrode surface at –0.50V. After that, reduced bismuth is stripped from the electrode surface during the positive potential sweep of –0.50V to 0.20V, and a well-defined stripping peak at –0.12V appears. The stripping peak current is proportional to the concentration of Bi3+ from 4×10–9molL–1 to 1×10–6molL–1. The detection limit (signal-to-noise=3) is 1×10–10molL–1 after 5min. accumulation. The proposed method was successfully applied to the determination of bismuth in water and nickel metal samples.  相似文献   

15.
A method for the preconcentration and determination of molybdenum(VI) in soil and plant samples using Amberlite XAD-7 resin and spectrophotometry is proposed. Molybdenum was preconcentrated as its Mo(V)-thiocyanate complex using a column containing Amberlite XAD-7 resin and determined spectrophotometrically at 461.0nm in acetone after elution. We investigated several parameters that affect the recovery of molybdenum, such as acidity, amount of reducing and complexing agents, flow rates, volume of sample solution, type and amount of eluent, and the presence of diverse ions. The limit of detection of the proposed method was 38µgL–1 of molybdenum. The recovery of molybdenum was 98.25±0.05 at 95% confidence level. The highest preconcentration factor was 100 for 250mL of sample volume. The proposed method was applied to soil and plant samples, and molybdenum was determined with a relative error of <3.5%.  相似文献   

16.
A new approach, based on non-aqueous capillary electrophoresis separation and indirect photometric detection, was established for the determination of the transition metal ions Pb2+, Zn2+ and Cd2+. Under optimized conditions, the method produced baseline separation of these three metal ions. The linear range and detection limits were 1050µM, 1.9µM for Cd2+; 1050µM, 2.1µM for Zn2+; and 20100µM, 3.8µM for Pb2+, respectively.  相似文献   

17.
A novel chromogenic reagent, 2-acetylmercaptophenyldiazoaminoazobenzene (AMPDAA), has been prepared by coupling 2-aminoacetylthiophenol to 4-aminoazobenzene through the –NH–N=N– group. In the presence of TritonX-100, AMPDAA reacts with Cd(II) in 1:1 triethanolamine medium to form a red complex with maximum absorption at 529nm. Under the optimal conditions, Beers law is obeyed over the range of 0.0 to 1.0µgmL–1 Cd(II), and the apparent molar absorptivity is 2.4× 105Lmol–1cm–1. Based on this, a highly sensitive and selective spectrophotometric method has been developed for direct determination of trace cadmium. The detection limit and the quantification limit were found to be 6.5 and 9.7µgL–1, respectively. The absorbance of AMPDAA-Cd(II) complex was 0.1881± 7.5×10–3 with a 4.9% relative standard deviation for five repeated measurements of the sample containing 2µg of cadmium in 25mL solution under the same experimental conditions. Interference of foreign ions was also investigated. Except for Ag(I) and Hg(II), most foreign ions can be tolerated in considerable amounts. Interference caused by Ag(I) and Hg(II) can be reduced by adding sodium thiosulfate. The proposed method has been applied to the determination of trace cadmium in rice, grain and flour samples with satisfactory results.  相似文献   

18.
This paper presents a new simple and rapid procedure for the preconcentration and determination of platinum. It is based on the adsorption of the metal ion and preconcentration on a micro-column (3cm×3mm) placed in the injection valve of a flow injection (FI) manifold and packed with 1,5-bis[(2-pyridyl)-3-sulphophenyl-methylene]thiocarbonohydrazide (PSTH) immobilised on an anion-exchange resin (Dowex 1X8-200). The metal was eluted from the column using a solution of 2M HNO3. Various parameters and chemical variables affecting the preconcentration and determination of this metal by ICP-AES were evaluated. Five variables (sample flow rate, eluent flow rate, nebulizer flow rate, buffer concentration and mixing coil length) were considered as factors in the optimisation process. Interactions between analytical factors, and their optimal levels were investigated using two level factorial and central matrix designs. The optimum conditions established were applied to the determination of platinum by flow injection inductively coupled plasma atomic emission spectrometry (FI-ICP-AES). The method has a linear calibration range of 25 to at least 200ngmL–1 with a detection limit of 7.4ngmL–1 (S/N=3) and a throughput of 10 samples h–1 using 5min. preconcentration time. The precision of the method (RSD) was 3.06% ngmL–1 at the 50ngmL–1 level of Pt(IV) and 2.93% at the 150ngmL–1 level. The accuracy of the method was examined by determining the analyte content in spiked waters and by analysing an automobile catalyst standard reference material. The results show good agreement with the certified value and sufficiently high recoveries.  相似文献   

19.
A novel electroanalytical method for the determination of physcion is described for the first time. Physcion yields an adsorption catalytic voltammetric peak at –0.74V (vs. SCE) in 0.4molL–1 NH4Cl–NH3·H2O buffer solution (pH 10.5) at a carbon paste electrode (CPE). The experimental results indicated that physcion is efficiently accumulated at a CPE by adsorption. In the subsequent potential scan, physcion was reduced to a homologous anthrahydroquinone compound. The compound was then immediately oxidized to physcion by the dissolved oxygen in the solution, and then physcion was again reduced at the CPE. As a result, a cyclic catalytic reaction was established. The second-order derivative peak current is proportional to the physcion concentration in the ranges of 2.0×10–104.0×10–9molL–1 (accumulation 90s) and 4.0×10–92.0×10–8molL–1 (accumulation 60s). The limit of detection is 8×10–11molL–1 (S/N=3) for a 120s accumulation time. The method was applied to the direct determination of physcion in the medicinal plant polygonum multiflorum Thumb with satisfactory results.  相似文献   

20.
A new method of SS-RTP for the determination of trace silver has been established. This method is based on the fact that Ag+, when activated by ,-bipyridyl (bipy) in a media of HAc–NaAc (pH=4.9), can catalyze the reaction of Rhodamine B (RhoB) oxidized by K2S2O8, thus causing the Solid Substrate Room-Temperature Phosphorescence (SS-RTP) of RhoB to be quenched. The activating efficiency of bipy is 6.7 times higher than that of o-phenanthroline (phen). The reduction of the phosphorescence intensity (Ip) of RhoB is directly proportional to the concentration of Ag+ ions in the range of 1.6016.0agspot–1 (0.40µLspot–1). The regression equation of the working curve can be expressed as Ip=18.78+5.100mAg+ (agspot–1) (r=0.9994, n=6), the detection limit is 0.28agspot–1. This rapid, accurate and sensitive method has been successfully applied to the determination of trace silver in tea and human hair samples, and the results agree well with the Atomic Absorption Spectroscopy (AAS) method. The mechanism of the catalyzing reaction is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号