首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four mixed O,S binding ligand precursors derived from maltol (3-hydroxy-2-methyl-4-pyrone) have been chelated to gallium(III), indium(III), and lanthanide(III) ions to yield a series of metal complexes. The four ligand precursors include two pyranthiones, 3-hydroxy-2-methyl-4-pyranthione, commonly known as thiomaltol (Htma), and 2-ethyl-3-hydroxy-4-pyranthione, commonly known as ethylthiomaltol (Hetma), and two pyridinethiones, 3-hydroxy-2-methyl-4(H)-pyridinethione (Hmppt) and 3-hydroxy-1,2-dimethyl-4-pyridinethione (Hdppt). Dimeric forms of the pyridinethiones, Hmppt dimer and Hdppt dimer, were also isolated and characterized. Complete characterization of the monomeric organic compounds is reported including acidity constants and crystal structures of Htma, Hetma, and Hdppt dimer. Reacting the four monomeric ligand precursors with Ga(3+) and In(3+) ions yielded new tris(bidentate ligand) complexes. X-ray-quality crystals of the fac isomer of Ga(tma)(3) were also obtained. New complexes with a range of lanthanides (Ln(3+)) were also synthesized with the two pyranthiones, Htma and Hetma. The synthesis reactions yielded complexes of the type LnL(3).xH(2)O and LnL(2)(OH).xH(2)O, as indicated by elemental analysis and spectroscopic evidence such as mass spectral data and IR and NMR spectra.  相似文献   

2.
Lewis JA  Cohen SM 《Inorganic chemistry》2004,43(21):6534-6536
The lead(II) ion is regarded as a serious environmental contaminant. A considerable need exists to develop selective ligands for remediation of this metal ion. Herein, the coordination chemistry of lead(II) is investigated with three O,S donor ligands: thiomaltol, 3-hydroxy-1-methyl-2(1H)-pyridinethione (3,2-HOPTO), and 3-hydroxy-1,2-dimethyl-4(1H)-pyridinethione (3,4-HOPTO). The X-ray structures of [Pb(thiomaltolato)(2)] and [Pb(3,4-HOPTO)(2)] have been solved, revealing the expected 4-coordinate geometries. Electronic spectra have been obtained for the lead(II) complexes with all three ligands. Preliminary solution studies show that the thiomaltol ligand binds lead(II) preferentially over magnesium(II) and calcium(II); however, [Pb(thiomaltolato)(2)] is not stable in the presence of 1 equiv of EDTA. Tetradentate ligands derived from these O,S chelators are expected to generate higher affinity ligands for lead(II) sequestration.  相似文献   

3.
Hanson GR  Sun Y  Orvig C 《Inorganic chemistry》1996,35(22):6507-6512
Bis(maltolato)oxovanadium(IV) (abbreviated BMOV or VO(ma)(2)) has been characterized by electron paramagnetic resonance (EPR) spectroscopy in CH(2)Cl(2), H(2)O, MeOH, and pyridine at both room and low temperatures. Spin Hamiltonian parameters for mono- and bis(maltolato)oxovanadium(IV) complexes [VO(ma)](+) (=[VO(ma)(H(2)O)(n)()](+), n = 2 or 3) and VO(ma)(2) (Hma = 3-hydroxy-2-methyl-4-pyrone, maltol) have been obtained by computer simulation (SOPHE). Configurations of solvated vanadyl/maltol complexes, VO(ma)(2)S, in solution (S = solvent) are proposed on the basis of a comparison of their hyperfine coupling constants with those obtained for related vanadium(IV) compounds in the literature. Whereas at room temperature pyridine coordinates to VO(ma)(2) in a position cis to the oxo ligand (cis isomer), in H(2)O or in MeOH solvated and unsolvated cis and trans adducts of VO(ma)(2) are all formed, with the cis isomer dominant. As expected, the coordinating ability was found to be in the order py > H(2)O approximately MeOH > CH(2)Cl(2). In aqueous solutions at room temperature and neutral pH, cis- and trans-VO(ma)(2)(H(2)O) complexes are present as major and minor components, respectively.  相似文献   

4.
The vanadium(IV,V) complexes formed with two aldaric acids (D-saccharic or D-glucaric acid, and mucic or galactaric acid) in aqueous solution were characterised by employing pH-potentiometry, EPR, multinuclear NMR and UV-VIS spectroscopy. The stoichiometry and stability constants of the complexes formed were determined at 25 degrees C and ionic strength I= 0.2 mol dm(-3)(KCl). The spectral measurements revealed that vanadium(IV,V) coordinates first at the terminal COO(-) functions, forming mononuclear complexes. At pH > 3, through the metal ion-induced deprotonation and coordination of the neighbouring alcoholic functions, (COO(-), O(-)) coordinated dinuclear complexes are formed, which predominate in the pH range 4-8. In the basic pH range, the ligand molecules are displaced and binary metal hydroxo and oxo complexes are present. EPR measurements at room temperature and at 140 K proved that formation of the VO(iv) dimers is more enhanced at room temperature, but at 140 K their dissociation is favoured. An interesting pH-dependent cis-trans isomeric equilibrium was assumed and analysed by EPR and molecular modelling in the case of the complexes [(VO)(2)L(2)H(x)](x=-2 and -4). Joint evaluation of the pH-potentiometric and (51)V NMR measurements revealed that both aldaric acids are able to bind an excess of vanadium(V), through the formation of oligomeric 2:1 and 3:2 species, besides the 2:2 species formed with VO(IV).  相似文献   

5.
Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts.  相似文献   

6.
Mononuclear oxovanadium(IV) and dioxovanadium(V) complexes of tris(2-pyridylmethyl)amine (tpa) have been prepared for the first time. Crystal structure determinations of three oxovanadium(IV) complexes, [VO(SO4)(tpa)], [VOCl(tpa)]PF6, or [VOBr(tpa)]PF6, and a dioxovanadium(v) complex [V(O)2(tpa)]PF6 disclosed that the tertiary nitrogen of the tpa ligand always occupies the trans-to-oxo site. The structures of an oxo-peroxo complex [VO(O2)(tpa)]Cl that was prepared previously and of a mu-oxo vanadium(III) complex [{VCl(tpa)}2(mu-O)](PF6)2 have also been determined. The tertiary nitrogen is located at a trans site to the peroxo and chloride ligands, respectively. The total sums of the four V-N bond lengths from the tpa ligand are remarkably similar among the six complexes, indicating that the vanadium oxidation states become less influential in tpa bonding due primarily to the coordination of electron-donating oxo ligand(s). Absorption spectra of [VOCl(tpa)]+ in acetonitrile showed a significant change upon addition of p-toluenesulfonic acid and HClO4, but not on addition of benzoic acid. Protonation at the oxo ligand by the former two acids is suggested. Cyclic voltammetric studies in acetonitrile verified the proton-coupled redox behavior of the V(III)/V(IV) process involving the oxo ligand for the first time. From the dependence of the added p-toluenesulfonic acid to the CV, redox potentials for the following species have been estimated: [V(IV)OCl(tpa)]+/[V(III)OCl(tpa)](E1/2=-1.59 V vs. Fc+/Fc), [V(IV)(OH)Cl(tpa)]2+/[V(III)(OH)Cl(tpa)]+(Epc=-1.34 V), [V(IV)(OH2)Cl(tpa)]3+/[V(III)(OH2)Cl(tpa)]2+(Epa=-0.49 V), and [V(IV)Cl2(tpa)]2+/[V(III)Cl2(tpa)]+(E1/2=-0.89 V). The reduction of [V(V)(O)2(tpa)]+ in 0.05 M [(n-Bu)4N]PF6 acetonitrile showed a major irreversible reduction wave V(V)/(IV) at -1.48 V. The metal reduction potentials of the oxovanadium(IV) and dioxovanadium(V) species are very close, reinforcing the significant influence of the oxo ligand(s).  相似文献   

7.
A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.  相似文献   

8.
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.  相似文献   

9.
Three novel tetranuclear vanadium(III) or (IV) complexes bridged by diphenyl phosphate or phosphate were prepared and their structures characterized by X-ray crystallography. The novel complexes are [{V(III)(2)(μ-hpnbpda)}(2){μ-(C(6)H(5)O)(2)PO(2)}(2)(μ-O)(2)]·6CH(3)OH (1), [{V(III)(2)(μ-tphpn)(μ-η(3)-HPO(4))}(2)(μ-η(4)-PO(4))](ClO(4))(3)·4.5H(2)O (2), and [{(V(IV)O)(2)(μ-tphpn)}(2)(μ-η(4)-PO(4))](ClO(4))(3)·H(2)O (3), where hpnbpda and tphpn are alkoxo-bridging dinucleating ligands. H(3)hpnbpda represents 2-hydroxypropane-1,3-diamino-N,N'-bis(2-pyridylmethyl)-N,N'-diacetic acid, and Htphpn represents N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine. A dinuclear vanadium(IV) complex without a phosphate bridge, [(VO)(2)(μ-tphpn)(H(2)O)(2)](ClO(4))(3)·2H(2)O (4), was also prepared and structurally characterized for comparison. The vanadium(III) center in 1 adopts a hexacoordinate structure while that in 2 adopts a heptacoordinate structure. In 1, the two dinuclear vanadium(III) units bridged by the alkoxo group of hpnbpda are further linked by two diphenylphosphato and two oxo groups, resulting in a dimer-of-dimers. In 2, the two vanadium(III) units bridged by tphpn are further bridged by three phosphate ions with two different coordination modes. Complex 2 is oxidized in aerobic solution to yield complex 3, in which two of the three phosphate groups in 2 are substituted by oxo groups.  相似文献   

10.
We report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species. In V(5)(Ale)(2) and V(5)(Zol)(2) a central V(IV) ion is surrounded by two V(V) dimers bound to bisphosphonate ligands. V(6)(Ale)(4) can be viewed as the condensation of one V(5)(Ale)(2) with one additional V(IV) ion and two Ale ligands, while V(3)(Zol)(3) is a triangular V(IV) POM. These new POM bisphosphonates complexes were all characterized by single-crystal X-ray diffraction. The stability of the Mo and W POMs was studied by (31)P NMR spectroscopy and showed that all compounds except the mononuclear Mo(Ale)(2) and W(Ale)(2) were stable in solution. EPR measurements performed on the vanadium derivatives confirmed the oxidation state of the V ions and evidenced their stability in aqueous solution. Electrochemical studies on V(5)(Ale)(2) and V(5)(Zol)(2) showed reduction of V(V) to V(IV), and magnetic susceptibility investigations on V(3)(Zol)(3) enabled a detailed analysis of the magnetic interactions. The presence of zoledronate or vanadium correlated with the most potent activity (IC(50)~1-5 μM) against three human tumor cell lines.  相似文献   

11.
Vanadium Complexes with Tridentate Diacidic Ligands. The Crystal Structures of Bis[acetylacetonato-thiobenzoylhydrazonato(2-)]vanadium(IV), Methoxo-oxo-[salicylaldehyd-thiobenzoylhydrazonato(2-)]vanadium(V), and Methoxo-oxo-[salicylaldehydbenzoylhydrazonato(2-)]methanol Vanadium(V) By template reactions of bis(acetylacetonato)oxovanadium(IV) and bis(salicylaldehydato)oxo-vanadium(IV), respectively, with benzoylhydrazine, thiobenzoylhydrazine, and 2-aminophenol the vanadium(IV) complexes V(LLL)2 of tridentate azomethine ligands LLL were synthesized. The complexes were characterized by EPR spectroscopy and by absorption spectroscopy. From the complex V(LLL)2 ( 1 ), in which LLL is acetyl-aceton-thiobenzoydrazonate(2-), the crystal structure analysis was solved. The vanadium atom in 1 is coordinated trigonal-prismatically by two N, 0 and S atoms. Furthermore, the 0x0 vanadium(V) complexes[VO(LLL)(OCH,)] (6) with LLL = salicylaldehyd-thio-benzoylhydrazonato(2-) and [VO(LLL)(OCH3)· -CH3OH] (7) with LLL = salicylaldehydbenzoylhydrazonato(2-) were identified by X-ray diffraction and by IR spectroscopy in the reaction products. Crystallographic data for 1, 6 , and 7 see ?Inhaltsübersicht”?.  相似文献   

12.
Reaction of the disulfide [HpicanS](2) (HpicanS is the carboxamide based on picolinate (pic) and o-mercaptoaniline (anS); the [] brackets are used to denote disulfides) with [VOCl(2)(thf)(2)] leads to reductive scission of the disulfide bond and formation of the mixed-valence (V(IV)/V(V)) complex anion [(OVpicanS)(2)mu-O](-) (1), with the dianionic ligand coordinating through the pyridine-N atom, the deprotonated amide-N atom, and thiophenolate-S atom. Reductive cleavage of the SbondS bond is also observed as [VCl(2)(tmeda)(2)] (tmeda=tetramethylethylenediamine) is treated with the disulfides [HsalanS](2) or [HvananS](2) (HsalanS and HvananS are the Schiff bases formed between o-mercaptoaniline and salicylaldehyde (Hsal) or vanillin (Hvan), respectively), yielding the V(III) complexes [VCl(tmeda)(salanS)] (2 a), or [VCl(tmeda)(vananS)] (2 b). The disulfide bond remains intact in the aerial reaction between [HsalanS](2) and [VCl(3)(thf)(3)] to yield the V(V) complex [VOCl[salanS](2)] (3), where (salanS)(2-) coordinates through the two phenolate and one of the imine functions. The S-S bond is also preserved as [VO(van)(2)] or [VO(nap)(2)] (Hnap=2-hydroxynaphthalene-1-carbaldehyde) is treated with bis(2-aminophenyl)disulfide, [anS](2), a reaction which is accompanied by condensation of the aldehyde and the diamine, and complexation of the resulting bis(Schiff bases) [HvananS](2) or [HnapanS](2) to form the complexes [VO[vananS](2)] (4 a) or [VO[napanS](2)] (4 b). In 4 a and 4 b, the phenolate and imine functions, and presumably also one of the disulfide-S atoms, coordinate to V(IV). 2-Mercaptophenyl-2'-pyridinecarboxamide (H(2)picanS) retains its identity in the presence of V(III); reaction between [VCl(3)(thf)(3)] and H(2)picanS yields [V[picanS](2)](-) (5). The dithiophenolate 2,6-bis(mercaptophenylthio)dimethylpyridine (6 a) is oxidized, mediated by VO(2+), to the bis(disulfide) octathiadiaza-cyclo-hexaeicosane 6 b. The relevance of these reactions for the speciation of vanadium under physiological conditions is addressed. [HNEt(3)]-1.0.5 NEt(3,) 3.3 CH(2)Cl(2), [HsalanS](2), [HNEt(3)]-5, and 6 b.4 THF have been characterized by X-ray diffraction analysis.  相似文献   

13.
Reaction of VO(acac)(2) with 2-mercaptophenol (mpH(2)) in the presence of triethylamine gives the mononuclear tris complex (Et(3)NH)(2)[V(mp)(3)] (1), in which the vanadyl oxygen has been displaced. An analogous reaction using 2-mercapto-4-methylphenol (mmpH(2)) afforded (Et(3)NH)(PNP)[V(mmp)(3)] (2), which was structurally characterized. 2 crystallizes in the orthorhombic space group Pna2(1 )with unit cell parameters (at -163 degrees C) a = 23.974(7) ?, b = 9.569(4) ?, c = 25.101(6) ?, and Z = 4. The coordination geometry around the vanadium is between octahedral and trigonal prismatic. Reaction of VO(acac)(2 )with the sodium salt of 2-mercaptophenol produces the vanadyl(IV) complex Na(Ph(4)P)[VO(mp)(2)].Et(2)O (3), which crystallizes in the triclinic space group P&onemacr; with unit cell parameters (at -135 degrees C) a = 12.185(4) ?, b = 12.658(4) ?, c = 14.244(4) ?, alpha = 103.19(2) degrees, beta = 100.84(2) degrees, and gamma = 114.17(2) degrees. The unit cell of 3 contains a pair of symmetry-related [VO(mp)(2)](2)(-) units bridged through vanadyl and ligand oxygen atoms by a pair of sodium ions, in addition to two PPh(4)(+) ions. The coordination geometry around the vanadium is square pyramidal, with a V=O bond length of 1.611(5) ?. 1, 2, and 3 are characterized by IR and UV-vis spectroscopies, magnetic susceptibility, EPR spectroscopy, and cyclic voltammetry. 1 and 2 can be oxidized by I(2, )Cp(2)Fe(+), or O(2) to [V(mp)(3)](-) and [V(mmp)(3)](-), respectively, which in turn can be reduced back to the dianions by oxalate ion. These reversible redox processes can be followed by UV-vis spectroscopy.  相似文献   

14.
A mononuclear peroxovanadium(V) complex with histamine-N,N-diacetate (histada), K[VO(O(2))(histada)], and a dinuclear peroxovanadium(V) complex with 2-oxo-1,3-diaminopropane-N,N,N',N'-tetraacetate (dpot), Cs(3)[(VO)(2)(O(2))(2)(dpot)], were prepared and characterized. The self-decomposition reaction was examined for these peroxovanadium(V) complexes as well as for K[VO(O(2))(cmhist)] (cmhist = N-carboxymethylhistidinate). The reaction profiles depicted by the absorbance change in the UV-vis spectrum show a sigmoid shape with an induction period. The induction period is reduced by the addition of acid, fluoride, thiocyanate, VO(2+), VO(2)(+), and trolox compared to the solution containing perchlorate. On the other hand, the induction period was elongated by the addition of chloride, bromide, and 2-tert-butyl-p-cresol. These behaviors are discussed on the basis of a radical chain mechanism. The self-decomposition reactions have also been followed by the (1)H and (51)V NMR and EPR spectra. These spectral studies as well as the UV-vis spectral study indicate that vanadium(V) is partly reduced to vanadium(IV) in the self-decomposition process. The histada complex yields a mixed-valence dinuclear complex in a concentrated solution, and the dpot complex yields a mixed-valence tetranuclear complex. The reduction of vanadium ion suggests that the peroxo ligand may act as a reducing agent. In order to know the fate of the peroxo ligand, we tried to detect superoxide anion and hydroxyl radical, which were anticipated to be produced in the self-decomposition process. The formation of superoxide anion was spectrophotometrically confirmed using two independent methods, including the reduction of cytochrome c and the reduction of sodium 4-[3-(iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1). The formation of hydroxyl radical was confirmed by an EPR spin trapping technique. The oxidizing abilities of the peroxovanadium(V) complexes toward bovine serum albumin (BSA) were also evaluated. In the protein carbonyl assay, it was found that the total amount of protein carbonyl in BSA was increased by the reaction with the peroxovanadium complexes in the concentration-dependent manner. In addition, the oxidation of sulfhydryl group in BSA induced by the peroxovanadium complexes was confirmed.  相似文献   

15.
Syntheses of vanadium complexes using the naturally occurring ligands isomaltol (Hima) and allomaltol (Hama), as well as a newly synthesized, potentially tetradentate diaminodipyrone [H(2)(en(ama)(2)], are reported. Complete characterization of the resulting compounds [trans-VO(ima)(2)(H(2)O), VO(ama)(2), V(ima)(3), V(ama)(3) and VO(en(ama)(2))], including X-ray crystallography analyses for trans-VO(ima)(2)(H(2)O) and V(ima)(3), are presented herein. Potentiometric titrations (25 degrees C, I = 0.16 M NaCl) were used to measure stability constants in the V(IV)-Hima system; these data were compared to previous data collected on the V(IV)-L (L = Hma, Hama) systems. The in vivo efficacy of these compounds to lower the blood glucose levels of STZ-diabetic rats was tested; all but VO(en(ama)(2)) produced significant decreases in plasma glucose levels. The results were compared to those of the benchmark compound BMOV [VO(ma)(2), bis(maltolato)oxovanadium(IV)], a known insulin-enhancing agent.  相似文献   

16.
The coordination chemistry of several O,S mixed donor ligands, namely thiopyrone and hydroxypyridinethione chelators, with a variety of middle and late first-row transition-metal ions is described. Complexes of 3-hydroxy-2-methyl-4-thiopyrone (thiomaltol) with cobalt(II), copper(II) and zinc(II); 3-hydroxy-1,2-dimethyl-4(1H)-pyridinethione (3,4-HOPTO) with iron(III), nickel(II), copper(II) and zinc(II); and 3-hydroxy-1-methyl-2(1H)-pyridinethione (3,2-HOPTO) with iron(III), nickel(II), copper(II) and zinc(II) have been synthesized and characterized. The structures, absorbance spectroscopy, cyclic voltammetry and superconducting quantum interferometer device (SQUID) measurements of selected metal complexes, as well as ligand protonation constants, are reported. Most of the metal complexes show coordination geometries indicative of a strong trans influence by the O,S chelators. The data presented herein provide the most detailed study of the transition-metal coordination chemistry of both thiopyrone and hydroxypyridinethione O,S donor ligands to date, and provide the basis for the investigation of these ligands in realm of biological inorganic chemistry.  相似文献   

17.
Zhang SY  Hu CL  Sun CF  Mao JG 《Inorganic chemistry》2010,49(24):11627-11636
Six new novel alkaline-earth metal vanadium(V) or vanadium(IV) selenites and tellurites, namely, Sr(2)(VO)(3)(SeO(3))(5), Sr(V(2)O(5))(TeO(3)), Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O), Ba(3)(VO(2))(2)(SeO(3))(4), Ba(2)(VO(3))Te(4)O(9)(OH), and Ba(2)V(2)O(5)(Te(2)O(6)), have been prepared and structurally characterized by single crystal X-ray diffraction analyses. These compounds exhibit six different anionic structures ranging from zero-dimensional (0D) cluster to three-dimensional (3D) network. Sr(2)(VO)(3)(SeO(3))(5) features a 3D anionic framework composed of VO(6) octahedra that are bridged by SeO(3) polyhedra. The oxidation state of the vanadium cation is +4 because of the partial reduction of V(2)O(5) by SeO(2) at high temperature. Ba(3)(VO(2))(2)(SeO(3))(4) features a 0D [(VO(2))(SeO(3))(2)](3-) anion. Sr(V(2)O(5))(TeO(3)) displays a unique 1D vanadium(V) tellurite chain composed of V(2)O(8) and V(2)O(7) units connected by tellurite groups, forming 4- and 10-MRs, whereas Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O) exhibits a 2D layer consisting of [V(4)O(14)] tetramers interconnected by bridging TeO(3)(2-) anions with the Sr(2+) and water molecules located at the interlayer space. Ba(2)(VO(3))Te(4)O(9)(OH) exhibits a one-dimensional (1D) vanadium tellurite chain composed of a novel 1D [Te(4)O(9)(OH)](3-) chain further decorated by VO(4) tetrahedra. Ba(2)V(2)O(5)(Te(2)O(6)) also features a 1D vanadium(V) tellurites chain in which neighboring VO(4) tetrahedra are bridged by [Te(2)O(6)](4-) dimers. The existence of V(4+) ions in Sr(2)(VO)(3)(SeO(3))(5) is also confirmed by magnetic measurements. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory (DFT) methods indicate that all six compounds are wide-band gap semiconductors.  相似文献   

18.
The oxidation of oxovanadium(IV) complexes [LV(IV)O] (L = tetradentate Schiff-base ligands such as N,N'-ethylenebis(salicylideneaminate)(2-) (salen) and N,N'-2,2-dimethylpropylenebis(salicylideneaminate)(2-) (salpn)) to [LV(V)O](+), believed to be responsible for the voltammetric response near 0.6 V vs Ag/AgCl in CH(2)Cl(2) in the presence of tetrabutylammonium tetrafluoroborate as a supporting electrolyte, is in fact coupled to a homogeneous process where [LVO](+) coordinates BF(4)(-) to form a neutral complex formulated as [LVOBF(4)]. The formation constants for [VO(salen)BF(4)] and [VO(salpn)BF(4)] are evaluated to be K(salen)(-)(1) = 1.1 x 10(2) M(-)(1) and K(salpn)(-)(1) = 1.4 x 10 M(-)(1), respectively. Crystal structure of [VO(salen)BF(4)] reveals that one of the fluorine atoms in BF(4)(-) is so close to the vanadium(V) atom as to be practically bound in the solid state.  相似文献   

19.
Reaction of the non-innocent dinucleating ligand 2,5-bis[N,N-bis(carboxymethyl) aminomethyl]hydroquinone (H 6bicah) with VO (2+) and VO 4 (3-) salts in water in the pH range 2 to 4.5 provides a series of novel tetranuclear V (IV) and/or V (V) macrocycles with the main core consisting of the anions [V (V) 4O 4(mu-O) 2(mu-bicah) 2] (4-) isolated at pH = 2.5 and [V (IV) 2V (V) 2O 4(mu-O) 2(mu-bicas)(mu-bicah)] (5-) and [V (IV) 4O 4(mu-O) 2(mu-bicas) 2] (6-) isolated at pH = 4.5 (bicas (*5-) = 2,5-bis[N,N-bis(carboxymethyl) aminomethyl]- p-semiquinonate), whereas at pH = 2 the dinuclear [(V (IV)O) 2(OH 2) 2(mu-bicah)] (2-) was obtained. All vanadium compounds have been characterized, and the charge of the ligand has been assigned in solid state by X-ray crystallography and infrared spectroscopy. The structures of the tetranuclear anions consist of four vanadium atoms arranged at the corners of a rectangle with the two bridging bicas (*5-) and/or bicah (6-) ligands on the long and the two V (IV/V)-O-V (IV/V) bridges on the short sides of the rectangle. UV-vis, (51)V and (1)H NMR spectroscopy and electrochemistry showed that these complexes interconvert to each other by varying the pH. This pH induced redox transformation of the tetranuclear anions has been attributed to the shift of the reduction potential of the bicas (*5-) to higher values by decreasing the pH. The electron is transferred intramolecularly from the metal ion to the electron accepting semiquinones resulting in reduction of bicas (*5-) to bicah (6-) and concurrent oxidation of the V (IV) to V (V). The resulting complexes are further oxidized by atmospheric oxygen. This system as a model for the H (+) coupled redox reactions in metalloenzymes and its relevance is discussed briefly.  相似文献   

20.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号