首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A homogenized 193 nm ArF* laser ablation system coupled to an inductively coupled plasma-"Time of Flight"-mass spectrometer (LA-ICP-TOFMS) was tested for depth profiling analysis on different single-layer Ti based coatings on steel and W carbides. Laser parameters, such as repetition rate, pulse energy and spatial resolution were tested to allow optimum depth related calibration curves. The ablation process using a laser repetition rate of 3 Hz, 120 microm crater diameter, and 100 mJ output energy, leads to linear calibration curves independent of the drill time or peak area used for calibrating the thickness of the layer. The best depth resolution obtained (without beam splitter) was 0.20 microm per laser shot. The time resolution of the ICP-TOFMS of 102 ms integration time per isotope was sufficient for the determination of the drill time of the laser through the coatings into the matrix with better than 2.6% RSD (about 7 microm coating thickness, n = 7). Variation of the volume of the ablation cell was not influencing the depth resolution, which suggests that the depth resolution is governed by the ablation process. However, the application on the Ti(N,C) based single layer shows the potential of LA-ICP-TOFMS as a complementary technique for fast depth determinations on various coatings in the low to medium microm region.  相似文献   

2.
A pulsed, frequency-quadrupled Nd:YAG laser (266 nm, 10 Hz) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES) was employed for depth profiling by ablation of a pyrolytically deposited Sn layer (300 nm) on float glass. The procedure consisted of performing individual ablation cycles (layer-by-layer). A raster with stroke distance of either 50 microm or 200 microm (the raster density) was used as an ablation pattern. The ablation was stopped after each cycle and the peak area of the resulting transient optical signal of the ICP discharge was plotted against the cycle number. The ablation rate of 90 to 20 nm per cycle at a low-energy pulse (6 mJ to 1 mJ) was determined by profilometry. A beam masking was employed to attenuate the laser shot energy and to eliminate the peripheral irregularity of the beam profile. Almost uniform removal of the square area (1 mm x 1 mm) of the coating by ablation was achieved by combining the fitted raster density, beam masking, focusing and beam energy. Different ablation processes were distinguished in cases of the tin coating and the uncoated glass surface. While the coating was mainly evaporated, the uncoated glass surface exhibited a crumbling associated with production of glass powder. This was confirmed by electron microscopy observations. The measured acoustic signal followed the behavior of the emission intensity of the Sn line and was supposed to be proportional to the amount of Sn vapors. The emission intensity depth profile of the Sn coating with graded structure was obtained, which qualitatively corresponded with the depth profile measured by secondary ion mass spectrometry.  相似文献   

3.
The use of CO(2) laser ablation for the patterning of capillary electrophoresis (CE) microchannels in poly(dimethylsiloxane)(PDMS) is described. Low-cost polymer devices were produced using a relatively inexpensive CO(2) laser system that facilitated rapid patterning and ablation of microchannels. Device designs were created using a commercially available software package. The effects of PDMS thickness, laser focusing, power, and speed on the resulting channel dimensions were investigated. Using optimized settings, the smallest channels that could be produced averaged 33 microm in depth (11.1% RSD, N= 6) and 110 microm in width (5.7% RSD, N= 6). The use of a PDMS substrate allowed reversible sealing of microchip components at room temperature without the need for cleanroom facilities. Using a layer of pre-cured polymer, devices were designed, ablated, and assembled within minutes. The final devices were used for microchip CE separation and detection of the fluorescently labeled neurotransmitters aspartate and glutamate.  相似文献   

4.
MALDI-MS imaging of features smaller than the size of the laser beam   总被引:1,自引:0,他引:1  
The feasibility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging of features smaller than the laser beam size has been demonstrated. The method involves the complete ablation of the MALDI matrix coating the sample at each sample position and moving the sample target a distance less than the diameter of the laser beam before repeating the process. In the limit of complete sample ablation, acquiring signal from adjacent positions spaced by distances smaller than the sample probe enhances image resolution as the measured analyte signal only arises from the overlap of the laser beam size and the non-ablated sample surface. Image acquisition of features smaller than the laser beam size has been demonstrated with peptide standards deposited on electron microscopy calibration grids and with neuropeptides originating from single cells. The presented MS imaging technique enables approximately 25 microm imaging spatial resolution using commercial MALDI mass spectrometers having irregular laser beam sizes of several hundred micron diameters. With appropriate sampling, the size of the laser beam is not a strict barrier to the attainable MALDI-MS imaging resolution.  相似文献   

5.
In this article, we focus on the enormous potential of a CO(2)-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel. In the experiments the laser beam power was varied between 0 and 40 W and the passes were varied in the range of 1 to 7 times. Typical channel depths were between 100 and 300 microm, while the channels were typically 250 microm wide. The narrowest produced channel was 85 microm wide. Several bonding methods for microstructured PMMA [poly(methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding, a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO(2)-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful in microfluidic prototyping due to the very short cycle time of production.  相似文献   

6.
We have developed a new method that enables agar microstructures to be used to cultivate cells and that allows cell network patterns to be controlled. The method makes use of non-contact three-dimensional photo-thermal etching with a 1480 nm infrared focused laser beam, which is strongly absorbed by water and agar gel, to form the shapes of agar microstructures. It allows microstructures to be easily formed in an agar layer within a few minutes, with cell-culture holes formed by the spot heating of a 100 mW laser and tunnels by the tracing of a 100 microm s(-1), 40 mW laser. We cultivated rat cardiac myocytes in adjacent microstructures and observed synchronized beating in them 90 min after they had made physical contact. Our results indicate that the system can make and use microstructures for cell-network cultivation in a minimal amount of time without any expensive microfabrication facilities or complicated procedures.  相似文献   

7.
Biospecimens with nearly flat surfaces on a flat stage are typically required for laser-based mass spectrometry imaging (MSI) techniques. However, sampling stages are rarely perfectly level, and accounting for this and the need to accommodate non-flat samples requires a deeper understanding of the laser beam depth of focus. In ablation-based MSI methods, a laser is focused on top of the sample surface, ensuring that the sample is at the focal point or remains within depth of focus. In general, the depth of focus of a given laser is related to the beam quality (M2) and the wavelength (λ). However, because laser is applied on a biological sample, other variables can also impact the depth of focus, which could affect the robustness of the MSI techniques for diverse sample types. When the height of a sample ranges outside of the depth of focus, ablated area and the corresponding ion abundances may vary as well, increasing the variability of results. In this tutorial, we examine the parameters and equations that describe the depth of focus of a Gaussian laser beam. Additionally, we describe several approaches that account for surface roughness exceeding the depth of focus of the laser.  相似文献   

8.
A pulsed, frequency-quadrupled Nd:YAG laser (266 nm, 10 Hz) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES) was employed for depth profiling by ablation of a pyrolytically deposited Sn layer (300 nm) on float glass. The procedure consisted of performing individual ablation cycles (layer-by-layer). A raster with stroke distance of either 50 μm or 200 μm (the raster density) was used as an ablation pattern. The ablation was stopped after each cycle and the peak area of the resulting transient optical signal of the ICP discharge was plotted against the cycle number. The ablation rate of 90 to 20 nm per cycle at a low-energy pulse (6 mJ to 1 mJ) was determined by profilometry. A beam masking was employed to attenuate the laser shot energy and to eliminate the peripheral irregularity of the beam profile. Almost uniform removal of the square area (1 mm × 1 mm) of the coating by ablation was achieved by combining the fitted raster density, beam masking, focusing and beam energy. Different ablation processes were distinguished in cases of the tin coating and the uncoated glass surface. While the coating was mainly evaporated, the uncoated glass surface exhibited a crumbling associated with production of glass powder. This was confirmed by electron microscopy observations. The measured acoustic signal followed the behavior of the emission intensity of the Sn line and was supposed to be proportional to the amount of Sn vapors. The emission intensity depth profile of the Sn coating with graded structure was obtained, which qualitatively corresponded with the depth profile measured by secondary ion mass spectrometry.  相似文献   

9.
The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating–substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%–16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.  相似文献   

10.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the distribution of the trace elements zinc, copper and lead in insular, central and hippocampal areas of thin tissue sections (thickness 20microm) through an entire human brain hemisphere. For the investigation of the tissue samples, a commercial laser ablation system was coupled to a double-focusing sector field ICP-MS. The regions of interest of healthy brain tissue (thickness 20microm) were scanned (raster area approximately 200mm(2)) with a focused laser beam (wavelength 266nm, diameter of laser crater 200microm and laser power density 3x10(9)Wcm(-2)). The ion intensities of (64)Zn(+), (63)Cu(+) and (208)Pb(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by means of dosing of each analyte to the pieces of brain tissue. The mass spectrometric analysis yielded inhomogeneous and largely reciprocal distributions of Zn and Cu in the selected areas of investigated brain samples. The highest concentrations of Zn and Cu with the most distinct distribution pattern were found in the hippocampus (up to 15microg g(-1)). In contrast to zinc and copper, for lead, a more homogeneous distribution throughout all regions examined was found at a low concentration (in the ngg(-1) range) level within the analytical range of LA-ICP-MS.  相似文献   

11.
The applicability of laser ablation (LA) inductively coupled plasma (ICP) spectrometry for assessing elemental distributions in layered ceramics was investigated and compared with electron probe microanalysis (EPMA). Ordinary glazed wall tiles were employed as model specimens due to their defined structure and composition. They were used for calibration in the analysis of ancient pottery. A qualitative depth profile was acquired by single-spot laser drilling perpendicular to coatings with a Nd:YAG (1064 nm) laser coupled with an ICP optical emission spectrometer (OES). The lower lateral resolution associated with the laser spot diameter of 1.0 mm led to smoothing of the depth profile due to the averaging of local irregularities. In addition, transverse line scans by ablation across the tile section using an ArF* (193 nm) laser coupled with an ICP mass spectrometer (MS) were performed. LA-ICP-OES depth profiles and LA-ICP-MS transverse scans were validated by EPMA section scans and 2D back-scattered electrons images. The LA-ICP-OES acquisition was less dependent on sample surface and layer irregularities, whereas the transverse line scan over the tile section with the small-spot beam offered insight into the micromorphology of the individual layer. The combined approach revealed the occurrence of individual mineral grains, micro-heterogeneities and the character of interfaces between layers.  相似文献   

12.
PLD (pulsed laser deposition) is an attractive technique to fabricate thin films with a stoichiometry reflecting that of the target material. Conventional PLD instruments are more or less black boxes in which PLD is performed virtually “blind”, i.e. without having great control on the important PLD parameters. In this preliminary study, for the first time, a 213 nm Nd-YAG commercial laser ablation-inductively coupled plasma mass spectrometer (LA-ICPMS) intended for microanalysis work was used for PLD under atmospheric pressure and in and ex situ ICPMS analysis for diagnostics of the thin film fabrication process.A PLD demonstration experiment in a He atmosphere was performed with a Sm13.8Fe82.2Ta4.0 target-Ta-coated silicon wafer substrate (contraption with defined geometry in the laser ablation chamber) to transfer the permanent magnetic properties of the target to the film. Although this paper is not dealing with the magnetic properties of the film, elemental analysis was applied as a means of depicting the PLD process. It was shown that in situ ICPMS monitoring of the ablation plume as a function of the laser fluence, beam diameter and repetition rate may be used to ensure the absence of large particles (normally having a stoichiometry somewhat different from the target). Furthermore, ex situ microanalysis of the deposited particles on the substrate, using the LA-ICPMS as an elemental mapping tool, allowed for the investigation of PLD parameters critical in the fabrication of a thin film with appropriate density, homogeneity and stoichiometry.  相似文献   

13.
This paper investigates the influence of polymer molecular weight (M(W)) on the chemical modifications of poly(methyl methacrylate), PMMA, and polystyrene, PS, films doped with iodonaphthalene (NapI) and iodophenanthrene (PhenI), following irradiation at 248 nm (KrF excimer laser, 20 ns fwhm and hybrid excimer-dye laser, 500 fs fwhm) and at 308 nm (XeCl excimer laser, 30 ns fwhm). The changes of intensity and position of the polymer Raman bands upon irradiation provide information on cleavage of the polymer bonds. Degradation of PMMA, which is a weak absorbing system at 248 nm, occurs to a higher extent in the case of a larger M(W), giving rise to the creation of unsaturation centers and to degradation products. For highly absorbing PS, no degradation is observed upon irradiation with a KrF laser. Consistently irradiating doped PS at 308 nm, where the absorption is low, induces degradation of the polymer. Results provide direct support for the bulk photothermal model, according to which ejection requires a critical number of broken bonds. In the case of irradiation of doped PMMA with pulses of 248 nm and 500 fs, neither degradation nor dependence with polymer M(W) are observed, indicating that mechanisms involved in the femtosecond laser ablation differ from those operating in the case of nanosecond laser ablation. Participation of multiphoton/avalanche processes is proposed.  相似文献   

14.
Analytical performance of laser ablation inductively coupled plasma-atomic emission spectrometry (ICP-AES) depends critically on the interaction between the laser light and the sample. The analyte emission line intensity in ICP-AES depends on the quantity of mass ablated. The effect of laser parameters (wavelength, pulse duration, and power density) was investigated for increasing the quantity of ablated mass. For fixed laser beam energy, the ablated mass can change 2 to 3 orders of magnitude by changing the laser beam spot size on the sample. The ablated mass quantity also depends on laser pulse duration and wavelength; and on ambient gas in the sample chamber. The shorter the pulse duration and wavelength, the higher the quantity of ablated mass. By using He in the chamber, the amount of mass increases by a factor of 2 for 30 ns excimer laser ablation and by an order of magnitude for ps-laser ablation.  相似文献   

15.
We observed direct desorption and ionization of angiotensin II and bovine insulin from a frozen polyacrylamide gel without the addition of an exogenous matrix, using picosecond pulses from a tunable, mid-infrared free-electron laser tuned to strong absorption bands of the gel. At 5.7, 5.9, 6.1 and 6.3 microm we were able to desorb and ionize both analyte molecules, with the strongest analyte signal generated at 5.9 microm. However, no analyte signal was observed at 5.5 microm. Consistent with a previous report, we did not observe ions of either polypeptide at 2.9 microm, in spite of strong overall absorption. We discuss the implications of this wavelength-dependent ionization, including possible ablation mechanisms and energy partitioning between competing vibrational modes.  相似文献   

16.
The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100 microm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100 microg g(-1)) for 3 h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30 microm) were scanned with a focused laser beam (wavelength 266 nm, diameter of laser crater 100 microm and laser power density 3 x 10(9) W cm(-2)). The ion intensities of (235)U(+), (238)U(+), (145)Nd(+) and (146)Nd(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

17.
2-Acetyl-6-(dimethylamino)naphthalene-derived two-photon fluorescent Ca2+ probes (ACa1-ACa3) are reported. They can be excited by a 780 nm laser beam, show 23-50-fold enhancement in one- and two-photon excited fluorescence in response to Ca2+, emit fourfold stronger two-photon excited fluorescence than Oregon Green 488 BAPTA-1 upon complexation with Ca2+, and can selectively detect intracellular free Ca2+ ions in live cells and living tissues with minimum interference from other metal ions and membrane-bound probes. Moreover, these probes are capable of monitoring calcium waves at a depth of 120-170 microm in live tissues for 1100-4000 s using two-photon microscopy with no artifacts of photobleaching.  相似文献   

18.
Irawan R  Tay CM  Tjin SC  Fu CY 《Lab on a chip》2006,6(8):1095-1098
This paper reports a compact and practical fluorescence sensor using an in-fiber microchannel. A blue LED, a multimode PMMA or silica fiber and a mini-PMT were used as an excitation source, a light guide and a fluorescence detector, respectively. Microfluidic channels of 100 microm width and 210 microm depth were fabricated in the optical fibers using a direct-write CO(2) laser system. The experimental results show that the sensor has high sensitivity, able to detect 0.005 microg L(-1) of fluorescein in the PBS solution, and the results are reproducible. The results also show that the silica fiber sensor has better sensitivity than that of the PMMA fiber sensor. This could be due to the fouling effect of the frosty layer formed at the microchannel made within the PMMA fiber. It is believed that this fiber sensor has the potential to be integrated into microfluidic chips for lab-on-a-chip applications.  相似文献   

19.
The progressive development of a micro-fluidic manifold for the chemiluminescent detection of copper in water samples, based on the measurement of light emitted from the Cu(ii) catalysed oxidation of 1,10-phenanthroline by hydrogen peroxide, is reported. Micro-fluidic manifolds were designed and manufactured from polymethylmethacrylate (PMMA) using three micro-fabrication techniques, namely hot embossing, laser ablation and direct micro-milling. The final laser ablated design incorporated a reagent mixing channel of dimensions 7.3 cm in length and 250 x 250 microm in width and depth (triangular cross section), and a detection channel of 2.1 cm in length and 250 x 250 microm in width and depth (total approx. volume of between 16 to 22 microL). Optimised reagents conditions were found to be 0.07 mM 1,10-phenanthroline, containing 0.10 M cetyltrimethylammonium bromide and 0.075 M sodium hydroxide (reagent 1 delivered at 0.025 mL min(-1)) and 5% hydrogen peroxide (reagent 2 delivered at 0.025 mL min(-1)). The sample stream was mixed with reagent 1 in the mixing channel and subsequently mixed with reagent 2 at the start of the detection channel. The laser ablated manifold was found to give a linear response (R(2) = 0.998) over the concentration ranges 0-150 microg L(-1) and be reproducible (% RSD = 3.4 for five repeat injections of a 75 microg L(-1) std). Detection limits for Cu(ii) were found to be 20 microg L(-1). Selectivity was investigated using a copper selective mini-chelating column, which showed common cations found in drinking waters did not cause interference with the detection of Cu(ii). Finally the optimised system was successfully used for trace Cu(ii) determinations in a standard reference freshwater sample (SRM 1640).  相似文献   

20.
The dependence of the signal intensity of analyte and matrix ions on laser fluence was investigated for infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry using a flat-top laser beam profile. The beam of an Er : YAG laser (wavelength, 2.94 microm; pulse width, 90 ns) was coupled into a sapphire fiber and the homogeneously illuminated end surface of the fiber imaged on to the sample by a telescope. Three different laser spot sizes of 175, 350 and 700 microm diameter were realized. Threshold fluences of common IR matrices were determined to range from about 1000 to a few thousand J m(-2), depending on the matrix and the size of the irradiated area. In the MALDI-typical fluence range, above the detection threshold ion signals increase strongly with fluence for all matrices, with a dependence similar to that for UV-MALDI. Despite the strongly different absorption coefficients of the tested matrices, varying by more than an order of magnitude at the excitation laser wavelength, threshold fluences for equal spot sizes were found to be comparable within a factor of two. With the additional dependence of fluence on spot size, the deposited energy per volume of matrix at threshold fluence ranged from about 1 kJ mol(-1) for succinic acid to about 100 kJ mol(-1) for glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号