首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports a potentially rapid and convenient immunoassay using antibody-platinum nanoparticle (Ab-PtNPs) conjugates as a reporter molecule and a flatbed scanner for detecting immuno-reaction and measuring of the immuno-reaction signal. This study was based on the sandwich immunoassay (three-layer format) which contained a primary antibody, test antigens and a secondary antibody. The results showed that the silver precipitation phenomenon was catalyzed by Ab-PtNPs conjugates. The changing color of reaction could easily be observed by naked eye or scanner. The silver enhancement reaction, a signal amplification method in which silver ions are reduced to silver metal, is introduced to magnify the detection signal. The relationship between sample concentration and detection signal was discussed. And the detection limit (sandwich assay) for the sample antigen was 10-1 ng/mL. Using a flatbed scanner, Ab-PtNPs conjugates and a silver enhancement reaction, a new immunoassay is constructed.  相似文献   

2.
Caifeng Ding  Hui Li  Jin-Ming Lin 《Talanta》2010,80(3):1385-1478
We describe herein the combination of electrochemical immunoassay using nanoporous gold (NPG) electrode with horseradish peroxidase (HRP) labeled secondary antibody-gold nanoparticles (AuNPs) bioconjugates for highly sensitive detection of protein in serum. The electroactive product of o-phenylenediamine (OPD) oxidized with H2O2 catalyzed by HRP was reduced in the Britton-Robinson (BR) buffer and the peak current of which was used to determine the concentration of antigen (Ag) in the analyte. The active surface area of NPG electrode was larger than that of a bare flat one. The presence of AuNPs enhanced the immobilized amount of HRP labeled antibody (Ab), which improved the sensitivity of the immunoassay when used as the secondary antibodies. As a result of these two combined effects, the sensitivity of the immunoassay for the determination of target protein was increased significantly. Using hepatitis B surface antigen (HBsAg) as a model, we demonstrate a dose response in the range of 0.01-1.0 ng/mL with a detection limit of 2.3 pg/mL. Analytical results of several human serum samples obtained using the developing technique are in satisfactory agreement with those given by enzyme-linked immune-absorbent assays (ELISA). In addition, the technique was about 100 times more sensitive in the detection of HBsAg than ELISA. All these demonstrated the feasibility of the present immunoassay method for clinical diagnosis.  相似文献   

3.
We present a novel immunoassay format utilizing the catalytic properties of gold nanoparticles in the luminol-silver nitrate-gold nanoparticle based chemiluminescence (CL) system for the detection of widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Highly sensitive anti-2,4-D antibody was produced and conjugated with gold nanoparticles of various sizes. In the present assay format, employing a competitive inhibition approach, a well-characterized hapten-protein conjugate (2,4-D-BSA) was used to coat the microtiter plates. The analyte (2,4-D) was pre-incubated with anti-2,4-D antibody labeled with gold nanoparticles and added to each well of the microtiter plate. The gold label triggered the reaction between luminol and silver nitrate generating a luminescence signal at 425 nm. Under the optimized conditions, the CL based immunoassay showed the detection limit of 2,4-D in standard water samples around 3 ng mL(-1). The CL based immunoassay format, based on gold nanoparticles as a catalyst, could be used as a fast screening methodology (<30 min) for pesticide detection.  相似文献   

4.
This paper describes the development of a new multiplex immunoassay for simultaneous detection of seven pesticides (triazophos, methyl-parathion, fenpropathrin, carbofuran, thiacloprid, chlorothalonil, and carbendazim). Sixteen pairs of pesticide antibodies and antigens were screened for reactivity and cross-reaction. A microarray chip consisting of seven antigens immobilized on a nitrocellulose membrane was then constructed. Nanogold was employed for labeling and signal amplification to obtain a sensitive colorimetric immunoassay. The direct and indirect detection formats were further compared using primary antibody-gold and secondary antibody-gold conjugates as tracers. An integrated 7-plex immunochip assay based on the indirect model was established and optimized. The detection limits for the pesticides were 0.02–6.45 ng mL−1, which meets detection requirements for pesticide residues. Naked-eye assessment showed the visual detection limits of the assay ranged from 1 to 100 ng mL−1. Spiked recovery results demonstrated that the immunochip assay had potential for multi-analysis of pesticide residues in vegetables and fruits. The proposed microarray methodology is a flexible and versatile tool, which can be applied to other competitive multiplex immunoassays for small molecular compounds.  相似文献   

5.
Enhanced sensitivity for the hepatotoxin microcystin-LR (MC-LR) was achieved in a quartz crystal microbalance (QCM) system via double amplification. For primary amplification, an innovative interface on the QCM was obtained as a matrix by the vesicle layer formed by our synthetic dendritic surfactant, bis (amidoethyl-carbamoylethyl) octadecylamine (C18N3). The vesicle matrix was then functionalised by an optimised concentration of monoclonal antibodies against MC-LR (anti-MC-LR) to detect the analyte. The results showed that a detection limit of 100 ng/mL was achieved by primary amplification. To achieve higher sensitivity, secondary amplification was implemented with anti-MC-LR gold nanoparticle (AuNPs) conjugates as probes, which lowered the detection limit for MC-LR to 1 ng/mL (the maximum concentration recommended by the World Health Organization [WHO] in drinking water for humans). The QCM immunosensor reported here has advantages such as high sensitivity, portability, simplicity, and cost-effectiveness for MC-LR detection. It would be uniquely superior compared with current MC-LR detection techniques for on-the-spot water detection. Furthermore, the methodology described here is also potentially significant in many fields for the routine monitoring of environmental and food safety.  相似文献   

6.
Luo C  Fu Q  Li H  Xu L  Sun M  Ouyang Q  Chen Y  Ji H 《Lab on a chip》2005,5(7):726-729
A simple but highly specific immunoassay system for goat anti-human IgG has been developed using gold nanoparticles and microfluidic techniques. The assay is based on the deposition of gold nanoparticles that are coated with protein antigens in the presence of their corresponding antibodies to microfluidic channel surface. The effects of time accumulation, the flow velocity, and the concentration of antibodies to the red light absorption percentage (RAP) of deposition were investigated with an ordinary optical microscope. By controlling the reaction time and flow velocity, a dynamic range of 3 orders of magnitude and a detection sensitivity of 10 ng ml(-1) of goat anti-human IgG were achieved. Because of its simplicity and flexibility, this new technique should be useful for fast, highthroughput screening of antibodies in clinical diagnostic applications.  相似文献   

7.
The development of rapid detection assays for malaria diagnostics is an area of intensive research, as the traditional microscopic analysis of blood smears is cumbersome and requires skilled personnel. Here, we describe a simple and sensitive immunoassay that successfully detects malaria antigens in infected blood cultures. This homogeneous assay is based on the fluorescence quenching of cyanine 3B (Cy3B)-labeled recombinant Plasmodium falciparum heat shock protein 70 (PfHsp70) upon binding to gold nanoparticles (AuNPs) functionalized with an anti-Hsp70 monoclonal antibody. Upon competition with the free antigen, the Cy3B-labeled recombinant PfHsp70 is released to solution resulting in an increase of fluorescence intensity. Two types of AuNP-antibody conjugates were used as probes, one obtained by electrostatic adsorption of the antibody on AuNPs surface and the other by covalent bonding using protein cross-linking agents. In comparison with cross-linked antibodies, electrostatic adsorption of the antibodies to the AuNPs surfaces generated conjugates with increased activity and linearity of response, within a range of antigen concentration from 8.2 to 23.8 μg.mL(-1). The estimated LOD for the assay is 2.4 μg.mL(-1) and the LOQ is 7.3 μg.mL(-1). The fluorescence immunoassay was successfully applied to the detection of antigen in malaria-infected human blood cultures at a 3% parasitemia level, and is assumed to detect parasite densities as low as 1,000 parasites.μL(-1).  相似文献   

8.
A highly sensitive and specific indirect enzyme-linked immunosorbent assay is described for Silvex, 2-(2,4,5 trichlorophenoxy)propionic acid, (2,4,5-TP). One specific feature of the immunoassay is the use of simple chemical activation of chlorophenoxy acids to prepare both the immunizing and coating conjugates. The assay is based on the use of polyclonal antibodies raised against 2,4,5-TP, and a peroxidase-labeled secondary antibody for colorimetric detection. The effect of different chemical conditions (pH, and salt and detergent concentration) on immunoassay performance has been studied. Under the best conditions the least detectable dose and the sensitivity (IC(50)) for 2,4,5-TP were 0.05 micro g L(-1) and 0.80 micro g L(-1), respectively. The optimized immunoassay was also highly specific, showing little (6.9% for 2,4,5-T) or no cross-reactivity with other similar herbicides. The assay was used to determine 2,4,5-TP in water and soils. The excellent recoveries obtained (mean values ranging between 89% and 104%) make this immunoassay a suitable screening method for either environmental monitoring or laboratory quantification of 2,4,5-TP.  相似文献   

9.
We reported here for the first time on the use of cotton thread combined with novel gold nanoparticle trimer reporter probe for low-cost, sensitive and rapid detection of a lung cancer related biomarker, human ferritin. A model system comprising ferritin as an analyte and a pair of monoclonal antibodies was used to demonstrate the proof-of-concept on the dry-reagent natural cotton thread immunoassay device. Results indicated that the using of novel gold nanoparticle trimer reporter probe greatly improved the sensitivity comparing with traditional gold nanoparticle reporter probe on the cotton thread immunoassay device. The assay avoids multiple incubation and washing steps performed in most conventional protein analyses. Although qualitative tests are realized by observing the color change of the test zone, quantitative data are obtained by recording the optical responses of the test zone with a commercial scanner and corresponding analysis software. Under optimal conditions, the cotton thread immunoassay device was capable of measuring 10 ng/mL human ferritin under room temperature which is sensitive enough for clinical diagnosis. Moreover, the sample solution employed in the assays is just 8 μL, which is much less than traditional lateral flow strip based biosensors.  相似文献   

10.
The measurement of biomarkers in bodily fluids is extremely important for diagnosing disease, monitoring disease progression, and evaluating treatment efficacy. In this paper, we present a highly sensitive and compatible gold nanoparticle (AuNP)‐based, two‐step signal amplification system for biomarker detection. First, AuNPs were coated onto the surfaces of 96‐well plates to generate rough surfaces, which enable immobilization of many more capture antibodies than a smooth substrate. As a result, detection sensitivity was enhanced significantly. Second, the horseradish peroxidase (HRP)‐conjugated detection antibodies were labeled on large‐size AuNPs, which increase the localized amounts of HRP and thus further lower the detection limit. Based on the consecutive signal amplification system, a high‐sensitivity assay was achieved, with a LOD of 0.07 ng/mL for prostate‐specific antigen (PSA). This assay was allowed to detect the PSA levels in clinical samples without changing the current standard immunoassay setups, showing great potential in many settings where immunoassays are needed.  相似文献   

11.
Protein array for assist diagnosis of acute myocardial infarction   总被引:2,自引:0,他引:2  
A nanogold probe immunoassay for cardiac troponin I (cTnI) combining the concepts of the one-step dual monoclonal antibody “sandwich” principle, the low density protein array, and silver enhancement on the gold particle is described. Two main substrates, namely the capture antibody (IgG1) coated supporting nitrocellulose membrane and the colloidal gold-labeled detection antibody (cAu–IgG2), were prepared before the detection. The detection procedure involved two steps, i.e. immunoreaction and silver amplification. The assay needs only small amounts of serum samples of patients. The detection results could be easily imaged with a simple flatbed scanner or even the naked eye. The whole detection procedure of the assay could be fulfilled within 40 min (much faster than the routine enzyme-linked immunosorbent assay (ELISA) that takes usually at least 3 h for a turnaround test). The detection limit of cTnI was found to be 1 ng/ml. The detecting results of cTnI in serum samples were similar to those detected by ELISA.  相似文献   

12.
A new immunoassay for continuously monitoring atrazine in water has been developed. It uses a portable biosensor platform based on surface plasmon resonance (SPR) technology. This immunoassay is based on the binding inhibition format with purified polyclonal antibodies, with the analyte derivative covalently immobilized on a gold sensor surface. An alkanethiol self-assembled monolayer (SAM) was formed on the gold-coated sensor surface in order to obtain a reusable sensing surface. The low detection limit for the optimized assay, calculated as the concentration that produces a 10% decrease in the blank signal, is 20 ng/L. A complete assay cycle, including regeneration, is accomplished in 25 min. Additionally, a study of the matrix effects of different types of wastewater was performed. All measurements were carried out with the SPR sensor system (β-SPR) commercialised by the company Sensia, S.L. (Spain). The small size and low response time of the β-SPR platform would allow it to be used in real contaminated locations. The immunosensor was evaluated and validated by measuring the atrazine content of 26 natural samples collected from Ebro River. Solid-phase extraction followed by gas chromatography coupled to mass spectrometric detection (SPE–GC–MS) was used to validate the new immunoassay.  相似文献   

13.
提出了一种基于胶体金标记的阳极溶出伏安免疫分析方法。免疫反应在聚苯乙烯微孔板中以夹心分析模式进行,通过物理吸附将兔抗人免疫球蛋白G(IgG)抗体固定于微孔板上,与相应抗原IgG发生免疫反应后,再通过夹心模式捕获相应的纳米金标记的羊抗人IgG抗体,然后再与金标羊抗人IgG抗体和金标兔抗羊二抗形成的免疫复合物反应,在微孔板上进一步引入大量的纳米金,将金溶解后,在碳糊电极上用阳极溶出伏安法(ASV)对金离子进行检测,溶出峰电流的大小间接与待分析物IgG的浓度成正比。对免疫分析的一些实验条件进行了优化。阳极溶出峰电流与IgG的对数浓度在1.1~1 143 ng/mL范围内呈良好的线性关系,检出限为1 ng/mL。将该方法应用于人血清中IgG浓度的测定,取得了满意结果。  相似文献   

14.
Dichlobenil is an extensively used herbicide worldwide which is transformed to the mobile 2,6-dichlorobenzamide (BAM) in soil. BAM has been found in many European groundwater resources that are exploited for drinking water. Currently, immunoassay based monitoring technique (plate based ELISA) is being employed to quantitatively detect BAM in water samples. In this work, as a starting step of developing immunoassay based on-site monitoring systems for pesticide analysis, the heterogeneous BAM immunoassay is optimised in terms of surface (polymer) regeneration. We have synthesised a small library of BAM haptens which are slightly different in chemical structures, immobilised them on surfaces and compared the affinity constants of the monoclonal antibody HYB 273 towards them. By using ELISA technology, we also have checked the regeneration potentials of the haptens, correlated these results to the affinity constants and found that BAM hapten with an intermediate affinity has better regeneration potential.  相似文献   

15.
Lin J  Chu P  Wei Z 《Analytical sciences》2012,28(1):21-25
A sensitive dual immunoassay was proposed for the determination of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) based on signal amplification. Monoclonal antibodies immobilized on magnetic mesoporous silica particles (Fe(3)O(4)/SiO(2)) were prepared as the primary probe. Horseradish peroxidase (HRP) labeled antibodies co-coated with HRP on gold nanoparticles (AuNPs) were used as the secondary probe to achieve signal amplification. HRP tags were retained in the flow cells after a sandwich immunoassay. By controlling two switches on the two channels, chemiluminescent substrates were injected orderly man way, and then signals for CEA and AFP were sequentially detected by HRP-luminol-H(2)O(2). Due to the increased amount of HRP on AuNPs and the increased amount of monoclonal antibodies on Fe(3)O(4)/SiO(2), the signals were largely amplified. Under the optimal conditions, CEA and AFP could be detected in the linear ranges of 1.0 - 80 and 1.0 - 75 ng mL(-1) with detection limits of 0.25 and 0.5 ng mL(-1), respectively.  相似文献   

16.
Yeh CH  Chen WT  Lin HP  Chang TC  Lin YC 《Talanta》2010,83(1):55-60
We describe the development of an immunoassay using an antibody-silver nanoparticle (Ab-AgNP) conjugate as a catalyst for the silver enhancement reaction. The immuno-reaction signals that were magnified by silver metal precipitation were quantified using a commercial flatbed scanner. Protein A from Staphylococcus aureus (S. aureus), a common clinical pathogenic bacterium, was used in this research. The ease of infection of S. aureus necessitates the development of a fast detection method. The framework of the method described in this paper is based on the sandwich immunoassay and contains a 1st antibody (immunoglobulin G, IgG), an antigen (Protein A), and a 2nd antibody-colloidal silver conjugate (IgG-AgNPs). The silver enhancement reaction, a signal amplification method in which silver ions are reduced to metallic silver, is used to magnify the immuno-reaction signal. The change in signal, as visualized in grayscale, can be easily observed and analyzed by our optical scanning detection system. The relationship between antigen concentration and grayscale value is discussed. The detectable concentration limit for the antigen was found to be 1 ng/mL with 10 μg/mL of IgG and 300 μM of the IgG-AgNP conjugate. This immunoassay method provides the advantages of low cost, easy operation, and short detection time. Moreover, it has potential applications in clinical diagnoses.  相似文献   

17.
Wang YC  Han J 《Lab on a chip》2008,8(3):392-394
Almost all immuno-biosensors are inherently limited by the quality of antibodies available for the target molecule, and obtaining a highly sensitive antibody for a given target molecule is a challenge. We describe a highly efficient and flexible way to enhance immunoassay detection sensitivity and binding kinetics using a nanofluidic based electrokinetic preconcentrator. The device is a microfluidic integration of charge-based biomolecule concentrator and a bead-based immunoassay. Because the preconcentrator can increase the local biomolecule concentration by many orders of magnitude, it gives the immuno-sensor better sensitivity and faster binding kinetics. With a 30 min preconcentration, we were able to enhance the immunoassay sensitivity (with molecular background) by more than 500 fold from higher 50 pM to the sub 100 fM range. Moreover, by adjusting the preconcentration time, we can switch the detection range of the given bead-based assay (from 10-10 000 ng ml(-1) to 0.01-10 000 ng ml(-1)) to have a broader dynamic range of detection. As the system can enhance both detection sensitivity and dynamic range, it can be used to address the most critical detection issues in the detection of common disease biomarkers.  相似文献   

18.
One-step membrane-based competitive colloidal gold-based immunoassays in flow-through and lateral-flow formats for the rapid detection of carbaryl were developed. Nitro-cellulose membrane strip was separately coated with goat anti-rabbit IgG (control line) and carbaryl hapten-OVA conjugate (test line). Anti-carbaryl antibody labeled with colloidal gold particles was firstly incubated with carbaryl. A positive reaction as a result of the remaining antibody-gold conjugate combining with antigen coated on the membrane was obvious by visual detection, with detection limits for flow-through and lateral flow of 50 and l00 μg/L, respectively. The assay time for both tests was less than 5 min, suitable for rapid testing on-site.  相似文献   

19.
A sensitive competitive flow injection chemiluminescence (CL-FIA) immunoassay for immunoglobulin G (IgG) was developed using gold nanoparticle as CL label. In the configuration, anti-IgG antibody was immobilized on a glass capillary column surface by 3-(aminopropyl)-triethoxysilane and glutaraldehyde to form immunoaffinity column. Analyte IgG and gold nanoparticle labeled IgG were passed through the immunoaffinity column mounted in a flow system and competed for the surface-confined anti-IgG antibody. CL emission was generated from the reaction between luminol and hydrogen peroxide in the presence of Au (III), generated from chemically oxidative dissolution of gold nanoparticle by an injection of 0.10 mol L−1 HCl–0.10 mol L−1 NaCl solution containing 0.10 mmol L−1 Br2. The concentration of analyte IgG was inversely related to the amount of bound gold nanoparticle labeled IgG and the CL intensity was linear with the concentration of analyte IgG from 1.0 ng mL−1 to 40 ng mL−1 with a detection limit of 5.2 × 10−10 g mL−1. The whole assay time including the injections and washing steps was only 30 min for one sample, which was competitive with CL immunoassays based on a gold nanoparticle label and magnetic separation. This work demonstrates that the CL immunoassay incorporation of nanoparticle label and flow injection is promising for clinical assay with sensitivity and high-speed.  相似文献   

20.
A capacitive sensing method based on self-assembling gold nanoparticles to the surface of the sol-gel modified electrode has been developed for the direct detection of the human IgG in human serum. The capacitance of the immunosensor corresponding to the concentration of human IgG is investigated by alternating current impedance. The formed mercaptopropyltriethoxysilane (MPTS) film is ultrathin; the immobilization density of antibodies is high because of high surface-volume area of the assembled gold nanoparticles and the biological macromolecules when immobilized on gold nanoparticles can retain their bioactivity. This capacitive immunosensor prepared with present method can provide high sensitivity. The linear calibration curve was obtained in the range 8.3-2128 ng/ml, with a detection limit of 3.3 ng/ml when plotted versus the logarithm of the antigen concentration. After each immunoassay, the regeneration of the electrode could be performed through washing in basic solution without obvious decrease in response. No cross-reactivity was observed with other protein species. The dependence of sol-gel modified electrode stability on the pH value and ion strength was studied. The insulating properties of the different layers of the immunosensor were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号