首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an approach to fabricate ZnO nanowires/polymer composite into three‐dimensional microstructures, based on two‐photon polymerization direct laser writing, a fabrication method that allows submicrometric spatial resolution. The structural integrity of the structures was inferred by scanning electron microscopy, while the presence and distribution of ZnO nanowires was investigated by energy dispersive X‐ray, Raman spectroscopy, and X‐ray diffraction. The optical properties of the produced composite microstructures were verified by imaging the characteristic ZnO emission using a fluorescence microscope. Hence, such approach can be used to develop composite microstructures containing ZnO nanowires aiming at technological applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 333–337  相似文献   

2.
3.
以单壁碳纳米管和二茂铁为原料, 采用气相扩散法合成填充率较高的二茂铁掺杂单壁碳纳米管(Fc@SWNTs)的复合材料. 考察激光辐射对样品的影响, 结果表明, 当激光功率达到20 mW时, 对样品进行10 s辐照, 样品的拉曼光谱出现了稳定的新峰. 对比分析发现, 二茂铁在激光辐照后形成了碳化铁, 同时部分碳源转化成碳管形成了双层碳管. 表明碳化铁是二茂铁裂解向内层碳管转化的中间产物.  相似文献   

4.
We report the shear-induced assembly of graphene oxide (GO) particles into periodic stripe-like patterns near the surface. These stripe-like patterns, which have an average periodic length of 100–250 μm, are aligned in a wavy manner along the normal to the flow direction. The self-assembled GO structures are investigated at different depths using three different analysis methods, namely, reflective microscopy observations of the photonic-crystalline GO dispersion, polarized optical microscopy, and fluorescence confocal laser scanning microscopy. The surface microstructures observed in reflection mode are different from the shear-induced band structures formed in bulk thermotropic liquid crystals and liquid crystal polymers, in terms of the shape and scale of the stripes. Further, there is also a difference in terms of the dependence of the stripe width on the shear rate. The observations suggest that the stripes are formed because of a competition between the stable surface-field-induced planar alignment of the GO particles near the surface and their relatively unstable shear-induced vertical alignment in the bulk. The findings of this study should advance our understanding of GO assembly under shear stress. Further, the proposed method is a novel one for inducing the assembly of GO particles into microstructures shaped as thread-like stripes.  相似文献   

5.
The surfaces of polyethylene terephthalate (PET) obtained by irradiation with a CO2 pulsed laser in air were studied. The complicated microstructures using various laser wavelengths were observed by scanning electron microscopy (SEM). The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and contact angle measurements. ATR-IR spectrum showed that the crystallinity in the surface region decreased due to laser irradiation. The water drop contact angle also decreased with increasing of laser pulses. The density of peroxides formed on the irradiated PET surface were determined by iodide method.  相似文献   

6.
The regular micrometer‐scale triangular arrays were formed using ultrafast femtosecond laser irradiation on (111) surface of silicon wafer immersed in KOH solution (0.1 g/ml). At low laser fluence, the resulting surface is covered by triangular pits microstructures, whereas at high laser fluence, the structures are transformed to multilayer‐triangular stacks‐microstructures. The number of triangular stacks layer increased as the laser fluence increased. The formation of triangle microstructure arrays depends on both silicon surface crystallographic orientation and the concentration of KOH solution. Either for lower KOH solution concentration (0.02 g/ml) or other silicon crystallographic orientation, triangle arrays cannot be obtained. We attribute the formation of triangular microstructure arrays to the laser‐assisted chemical etching process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Because fluids at the microscale form three dimensional interfaces and are subject to three dimensional forces, the ability to create microstructures with modulated topography over large areas could greatly improve control over microfluidic phenomena (e.g., capillarity and mass transport) and enable exciting novel microfluidic applications. Here, we report a method for the fabrication of three-dimensional relief microstructures, based on the emergence of smooth features when a photopolymer is exposed to UV light through a transparency mask with binary motifs. We show that homogeneous features emerge under certain critical conditions that are also common to other, apparently unrelated, phenomena such as the emergence of macroscopic continuum properties of composite materials and the rates of ligand binding to cell membrane receptors. This fabrication method is simple and inexpensive, and yet it allows for the fabrication of microstructures over large areas (centimetres) with topographic modulation of features with characteristic dimensions smaller than 100 micrometres.  相似文献   

8.
A method to combine gated trapping and capacitive coupling into a single experiment is reported. This is achieved with a circuit that allows isolation of the electronic network that gates the trapping voltage from the circuit that enables capacitive coupling of the rf excitation signal to the trapping plates. When the capacitive coupling network is not isolated from the gated trapping network, the trapping voltage changes occur on a 100 µs or longer timescale, which is incompatible with efficient capture of ions formed by matrix-assisted laser desorption ionization. Isolation of the two networks allows the trapping voltage to be gated with less than a 10 µs risetime. The effectiveness of this approach is demonstrated by a set of experiments carried out with and without the benefit of the isolation of capacitive coupling from gated trapping.  相似文献   

9.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

10.
In this paper we describe the use of a CO(2) laser for production of cavities and microstructures in poly(methyl methacrylate) (PMMA) by moving the laser beam over the PMMA surface in a raster pattern. The topography of the cavities thus produced is studied using stylus and optical profilometry and scanning electron microscopy (SEM). The microstructures display artifacts from the laser ablation process and we describe how the laser ablation parameters can be optimized in order to minimize these artifacts. Using this technique it is possible to generate structures with a depth from 50 microm and a minimum width of approximately 200 microm up to depth and widths of several mm, governed by the beam size and the laser settings.  相似文献   

11.
Laser therapy by low light doses shows promising results in the modulation of some cell functions. Various clinical studies indicate that laser therapy is a valuable method for pain treatment and the acceleration of wound healing. However, the mechanism behind it is still not completely understood. To explore the effect of a low-power diode laser (lambda = 780 nm) on normal skin tissue, time-dependent contrast enhancement has been determined by magnetic resonance imaging (MRI). In the examinations, six healthy volunteers (four male and two female) have been irradiated on their right planta pedis (sole of foot) with 5 J/cm2 at a fluence rate of 100 mW/cm2. T1-weighted magnetic resonance imaging is used to quantify the time-dependent local accumulation of Gadolinium-DPTA, its actual content in the local current blood volume as well as its distribution to the extracellular space. Images are obtained before and after the application of laser light. When laser light is applied the signal to noise ratio increases by more than 0.35 +/- 0.15 (range 0.23-0.63) after irradiation according to contrast-enhanced MRI. It can be observed that, after biomodulation with light of low energy and low power, wound healing improves and pain is reduced. This effect might be explained by an increased blood flow in this area. Therefore, the use of this kind of laser treatment might improve the outcome of other therapeutic modalities such as tumour ionizing radiation therapy and local chemotherapy.  相似文献   

12.
Various UV-laser-induced fluorescence detection strategies for capillary electrophoresis (CE) are compared, i.e. two UV-laser systems (a pulsed laser providing up to 25 mW of tunable emission, applied at 280, 290 and 325 nm, and a continuous wave (cw) laser providing up to 100 mW of 257 nm emission) and different methods to collect the fluorescence emission signal and to reduce the background. Attention is focused on the determination of amino- and hydroxy-substituted naphthalene sulphonates (NS) in river water; these analytes exhibit native fluorescence upon UV excitation. Optimum results were obtained by applying only a minor portion of the available (average) laser powers, viz. 0.7 mW at 280 nm for the pulsed laser, and 5 mW for the cw laser. For emission collection, the most favourable results were obtained with a mirror-based microscope objective, which facilitates efficient spatial filtering and does not produce impurity fluorescence upon UV-laser irradiation. For standard solutions, the cw laser gave around 20-fold better detection limits (10−9–10−10 M) than the pulsed laser. For river water, excitation of interferences (presumably humic acids, which exhibit native fluorescence) could be much better suppressed if the pulsed laser was used with selective excitation at 280 nm. Therefore, for real-sample analysis the latter combination is to be preferred. The set-up was used for the identification and quantification (at the 1–35 μg l−1 level) of NS in a river Elbe sample.  相似文献   

13.
Data on the mid-temperature solid-oxide fuel cells (SOFC) with thin-film ZrO2-Y2O3 (YSZ) electrolyte are shown. Such a fuel cell comprises a carrying Ni-YSZ anode, a YSZ electrolyte 3–5 μm thick formed by vacuum ion-plasma methods, and a LaSrMnO3 cathode. It is shown that the use of a combined method of YSZ electrolyte deposition, which involves the magnetron deposition of a 0.5–1.5-μm thick sublayer and its pulse electron-beam processing allows a dense nanostructured electrolyte film to be formed and the SOFC working temperature to be lowered down as the result of a decrease in both the solid electrolyte Ohmic resistance and the Faradaic resistance to charge transfer. SOFC are studied by the methods of voltammentry and impedance spectroscopy. The maximum power density of the SOFC under study is 250 and 600 mW/cm−2 at temperatures of 650 and 800°C, respectively.  相似文献   

14.
Gold (Au) nanoparticles (NPs) have large surface areas and novel optical properties and can be readily functionalized using thiol-based chemistry; hence, they are useful in bioanalytical chemistry. Here, we describe a one-step, plasma-etching process that results in the spontaneous formation of Au NP coated recessed microstructures in silicon (Si). Mechanistically, the plasma etch rate of Si was enhanced in the vicinity of 10-100 nm thick Au patterns resulting in the formation of microwells or microchannels uniformly coated with 20-30 nm sized Au NPs. The methodology provides versatility in the types of microstructures that can be formed by varying the shape and dimensions of the Au patterns and the etch time. We also describe selective binding of antibodies to Au NP coated Si microwells using thiol-based surface modification.  相似文献   

15.
We have examined the feasibility of performing crossed molecular beam chemistry with pulsed beams ablated from surfaces. Crossed ablated beams (CAB) could be formed by laser photodissociation, photoejection or thermal desorption involving either adsorbate molecules or substrate. We note that: (i) reagents can be formed in high flux pulses with temporal widths as short as the laser duration, (ii) reaction product signal levels are several orders of magnitude higher than for conventional crossed molecular beam experiments, (iii) the short duration of the beam crossing allows the product time-of-flight spectra to display excellent translational energy resolution, (iv) the method lends itself to the generation of free radical beams, permitting radical-radical reactions to be studied under single collision conditions, (v) reactions with cross-sections as low as 0.01 Å2 should be readily observable. Other attributes of CAB include aligned reagents or beams of complexes.  相似文献   

16.
Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given master only allows the reproduction of the defined structure. We report on a simple, cheap and practical method to produce microstructures in already cured PDMS by direct UV-lithography followed by chemical development. Due to the available options during the lithographic process like multiple exposures, the method offers a high design flexibility granting easy access to complex and stepped structures. Furthermore, no master is needed and the use of pre-cured PDMS allows processing at ambient (light) conditions. Features down to approximately 5 μm and a depth of 10 μm can be realised. As a proof of principle, we demonstrate the feasibility of the process by applying the structures to various established soft lithography techniques.  相似文献   

17.
This paper reports the use of mass spectrometry to characterize oligonucleotides immobilized to the surfaces of biochips. Biotinylated oligonucleotides were immobilized to self-assembled monolayers that present a streptavidin layer and then treated with a complementary strand to present short duplexes. Treatment of the surface with 5-methoxysalicylic acid and ammonium citrate matrix allows the individual oligonucleotides to be observed by matrix-assisted laser desorption/iozation and time-of-flight mass spectrometry (MALDI-TOF MS). Examples are shown wherein this method is applied to assays of hybridization, of cleavage by a deoxyribozyme, of a dephosphorylation reaction, and of the adducts formed on treatment of DNA with cis-platin. This work provides an early example of the application of mass spectrometry to DNA biochips and may substantially expand the applications of the now common oligonucleotide arrays.  相似文献   

18.
We use confocal laser scanning microscopy to measure interactions in colloidal suspensions. By inverting the radial distribution function, determined by tracking the particle coordinates, we obtain the effective interaction between the colloidal particles. Although this method can be applied to arbitrary colloidal interactions, here we demonstrate its efficacy with two well-known systems for which accurate theories are available: a colloid-polymer mixture and binary hard spheres. The high sensitivity of this method allows for the precise determination of complex interactions, as exemplified, for example, by the accurate resolution of the oscillatory effective potential of the binary hard sphere system. We argue that the method is particularly well suited for the determination of attractive forces.  相似文献   

19.
Khaing Oo MK  Chang CF  Sun Y  Fan X 《The Analyst》2011,136(13):2811-2817
We report rapid, sensitive, and direct detection of 2,4-dinitrotoluene (DNT) vapor using tailored gold nanoparticles (Au-NPs) as the SERS substrate. The Au-NPs were synthesized using the UV-assisted photo-chemical reduction method and subsequently formed a monolayer on the glass slide through polymer-mediated self-assembly. The SERS substrate such prepared has high SERS enhancement, high affinity towards DNT vapor, and rapid response to the DNT adsorption/desorption. We systematically studied the effect of the Au-NP size and surface density on the SERS performance such as enhancement factor and response time. With the optimized SERS substrate, an enhancement factor over 5.6 × 10(6) was achieved. Furthermore, real-time detection of DNT vapor with only 0.35 second data acquisition time was demonstrated using a 12 mW laser. Compared to previously reported results, we achieved two orders of magnitude reduction in detection time and more than one order of magnitude reduction in excitation laser power. The detection limit is estimated to be 0.4 attogram, which corresponds to a sub-ppb DNT concentration in air. This work will lead to the development of ultra-fast and ultra-sensitive SERS devices for explosive identification and monitoring.  相似文献   

20.
Abstract— We compared the DNA damage produced by radiation from two UV laser wavelengths, 213 nm and 193 nm, with that produced by noncoherent 254 nm radiation. Following irradiation of Escherichia coli BR339, a bacteriophage lambda lysogen containing the lacZ gene, prophage induction was measured by assaying for β-galactosidase. Because of the limited penetration by UV laser wavelengths an agar overlay of the lysogen was used as the irradiation target. Irradiation of 254 nm was performed in buffer suspension followed by transfer of 5 μL spots onto assay plants. Computer image analysis was used to monitor the rate of product formation, observed as an increase in optical density of the irradiated zones on assay plates. We found that the rate of product formation was a more reproducible unit of comparison than the optical density present at the end of the reaction. Although the rate of product formation was not linearly related to enzyme concentration, the data could be fit to a simple logarithmic function. Using this method, we concluded that the DNA damaging ability of 213 nm radiation was 10 times more efficient than 193 nm radiation and about 100 times less efficient than 254 nm noncoherent radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号