首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of microfluidic chip-based two-dimensional separation holds great promise in the proteomics field, given its portability, simplicity, speed, efficiency, and throughput. However, inclusion of sodium dodecyl sulfate, reported to be necessary for increasing protein-resolving capability, was also accompanied by the loss of both protein conformation and biological function. Here, we describe separation of native proteins by introducing blue native gel electrophoresis into isoelectric focusing and gel electrophoresis (IEF/CGE)-coupled protein two-dimensional microfluidic chip electrophoresis. After assessing the influence of various experimental conditions, the best separation ability and reproducibility of blue native IEF/CGE (IEF/BN-CGE) chip electrophoresis achieved until now were demonstrated no matter whether with a simple simulated mixture or with a complex mixture of total Escherichia coli proteins. Finally, instead of theoretical calculations, the image analysis technique was also used for the first time to quantitatively evaluate the actual peak capacities of chip electrophoresis. According to the number of features abstracted in the electrophoresis patterns, the superiority of the IEF/BN-CGE two-dimensional microfluidic chip electrophoresis was then exhibited quantitatively. The high native protein separation performance makes this established chip electrophoresis method possible for further application in widely needed drug screening, analysis of bio-molecular function, and assays of protein–protein interactions.  相似文献   

2.
Das C  Zhang J  Denslow ND  Fan ZH 《Lab on a chip》2007,7(12):1806-1812
Two-dimensional (2D) protein separation is achieved in a plastic microfluidic device by integrating isoelectric focusing (IEF) with multi-channel polyacrylamide gel electrophoresis (PAGE). IEF (the first dimension) is carried out in a 15 mm-long channel while PAGE (the second dimension) is in 29 parallel channels of 65 mm length that are orthogonal to the IEF channel. An array of microfluidic pseudo-valves is created for introducing different separation media, without cross-contamination, in both dimensions; it also allows transfer of proteins from the first to the second dimension. Fabrication of pseudo-valves is achieved by photo-initiated, in situ gel polymerization; acrylamide and methylenebisacrylamide monomers are polymerized only in the PAGE channels whereas polymerization does not take place in the IEF channel where a mask is placed to block the UV light. IEF separation medium, carrier ampholytes, can then be introduced into the IEF channel. The presence of gel pseudo-valves does not affect the performance of IEF or PAGE when they are investigated separately. Detection in the device is achieved by using a laser induced fluorescence imaging system. Four fluorescently-labeled proteins with either similar pI values or close molecular weight are well separated, demonstrating the potential of the 2D electrophoresis device. The total separation time is less than 10 minutes for IEF and PAGE, an improvement of 2 orders of magnitude over the conventional 2D slab gel electrophoresis.  相似文献   

3.
Stastná M  Slais K 《Electrophoresis》2005,26(18):3586-3591
Two-dimensional gel isoelectric focusing (2-D gel IEF) is presented as the combination of the same separation method used consecutively in two directions of the same gel. In this new method, after completion of IEF process in the first dimension the gel was cut into the separate strips, each containing selected analytes together with the appropriate part of the original broad pH gradient, and the strips were rotated by 90 degrees (with regard to the first IEF) and left to diffuse overnight. After diffusion the strips were subjected to the second IEF. During the second IEF, the corresponding narrow part of pH gradient in each strip was restored again, however, now along the strip. The progress of the separation process can be monitored visually by using colored low-molecular-weight isoelectric point (pI) markers loaded into the gel simultaneously with proteins. The unique properties of IEF, focusing and resolution power were enhanced by using the same technique twice. Two forms of beta-lactoglobulin (pI values 5.14 and 5.31, respectively) non-separated in the first IEF were successfully separated in the second dimension at relatively low voltage (330 V) with the resolution power comparable to the high-resolution gels requiring the high voltage during the run and long separation time. Glucose oxidase loaded as diluted solution into ten positions across the gel was finally focused into a single band during 2-D gel IEF. Since the first and second IEF are carried out on the same gel, no losses and contamination of analyte occur. The suggested method can be used for separation/fractionation of complex biological mixtures, similarly as other multidimensional separation techniques applied in proteomics, and can be followed by further processing, e.g., mass spectrometry analysis. The focusing properties of IEF could be useful especially in separation of mixtures, where components are at low concentration levels.  相似文献   

4.
A rapid procedure of isoelectric focusing (IEF) of proteins in polyacrylamide rod gels (i.d., 1.1 mm; length, 7.5 cm) is described. The time required for IEF can be reduced to 0.5 h by using high voltages up to 3000 V in the presence or absence of urea in the gels. When used as the first dimension of a two-dimensional technique for IEF sodium dodecyl sulphate electrophoresis, high voltage IEF gives smaller protein spots on the second dimension gel, associated with an increase in resolution. The method has been tested by a two-dimensional separation of an eye sample of the goodeid fish Xenotoca eiseni.  相似文献   

5.
Miniaturized capillary isoelectric focusing in plastic microfluidic devices   总被引:1,自引:0,他引:1  
Tan W  Fan ZH  Qiu CX  Ricco AJ  Gibbons I 《Electrophoresis》2002,23(20):3638-3645
We report the demonstration of miniaturized capillary isoelectric focusing (CIEF) in plastic microfluidic devices. Conventional CIEF technique was adapted to the microfluidic devices to separate proteins and to detect protein-protein interactions. Both acidic and basic proteins with isoelectric points (pI) ranging from 5.4 to 11.0 were rapidly focused, mobilized, and detected in a 1.2 cm long channel (50 microm deep x 120 microm wide) with a total analysis time of 150 s. In a device with a focusing distance of 4.7 cm, the separation efficiency for a basic protein, lysozyme, was achieved as high as 1.5 x 10(5) plates, corresponding to 3.2 million plates per meter. We also experimentally confirmed that IEF resolution is essentially independent of focusing length when the applied voltage is kept the same and within a range that it does not cause Joule heating. Further, we demonstrated the use of miniaturized CIEF to study the interactions between two pairs of proteins, immunoglobulin G (IgG) with protein G and anti-six histidine (anti-6xHis) with 6xHis-tagged green fluorescent protein (GFP). Using this approach, protein-protein interactions can be detected for as little as 50 fmol of protein. We believe miniaturized CIEF is useful for studying protein-protein interactions when there is a difference in pI between a protein-protein complex and its constitutent proteins.  相似文献   

6.
Two-dimensional electrophoresis of membrane proteins   总被引:1,自引:0,他引:1  
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.  相似文献   

7.
在微流控芯片上构建多维分离系统,为蛋白质组学研究提供了一个有发展前景的高效分离分析技术平台。本文介绍了二维芯片电泳系统耦联模式选取及正交性评价的方法;综述了针对蛋白质/多肽分离分析的各种耦联模式微流控二维芯片电泳分析系统,如胶束电动力学色谱(MEKC)与毛细管区带电泳(CZE),开管电色谱(OECE)与CZE,等电聚焦(IEF)与CZE, IEF与SDS毛细管凝胶电泳(CGE), SDS-CGE与MEKC等。特别对二维电泳芯片切换接口的类型进行了分类,探讨了用于微流控二维芯片电泳系统的检测技术,并展望了微流控二维电泳芯片在蛋白质组学研究中的应用前景和发展方向。  相似文献   

8.
Two-dimensional gel electrophoresis practitioners have long waited for a fully automated system. This article presents an integrated platform that is capable of complete automation from sample introduction to spots detection. The strip gel for the first dimensional separation is fixed on the edge of a discrete planar stage before separation. A pair of platinum pin electrodes for isoelectric focusing (IEF) makes contact from underneath the stage. IEF is performed directly after rehydration and protein loading. After the first dimensional separation, sodium dodecyl sulfate (SDS) equilibration is done on the same stage without moving the gel. The IEF stage is then moved horizontally to couple with a precast second dimensional gel. The <0.5 mm gap between the two gels is filled with poly (ethylene oxide) solution. After SDS-polyacrylamide gel electrohporesis separation, a charge-coupled device camera is used to detect spots via protein native fluorescence excited by a Hg (Xe) lamp with the gel inside the running cell. Potential for full automation is demonstrated with 0.5 microg of Escherichia coli proteins on this miniaturized platform. More than 240 spots are detected in a total experiment time of <2.5 h.  相似文献   

9.
Researchers frequently use two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) prior to mass spectrometric analysis in a proteomics approach. The i2D‐PAGE method, which ‘inverts’ the dimension of protein separation of the conventional 2D‐PAGE, is presented in this publication. Protein lysate of Channa striata, a freshwater snakehead fish, was separated based on its molecular weight in the first dimension and its isoelectric point in the second dimension. The first‐dimension separation was conducted on a gel‐free separation device, and the protein mixture was fractionated into 12 fractions in chronological order of increasing molecular weight. The second‐dimension separation featured isoelectric focusing, which further separated the proteins within the same fraction according to their respective isoelectric point. Advantages of i2D‐PAGE include better visualisation of the isolated protein, easy identification on protein isoforms, shorter running time, customisability and reproducibility. Erythropoietin standard was applied to i2D‐PAGE to show its effectiveness for separating protein isoforms. Various staining methods such as Coomassie blue staining and silver staining are also applicable to i2D‐PAGE. Overall, the i2D‐PAGE separation method effectively separates protein lysate and is suitable for application in proteomics research.  相似文献   

10.
S-nitrosylation (also referred to as nitrosation), a reversible post translational modification (PTM) of cysteine, plays an important role in cellular functions and cell signalling pathways. Nitrosylated proteins are considered as biomarkers of aging and Alzheimer's disease (AD). Microfluidics has been widely used for development of novel tools for separation of protein mixtures. Here we demonstrate two-dimensional micro-electrophoresis (2D μ-CE) separations of nitrosylated proteins from the human colon epithelial adenocarcinoma cells (HT-29) and AD transgenic mice brain tissues. Sodium dodecyl sulphate micro-capillary gel electrophoresis (SDS μ-CGE) and microemulsion electrokinetic chromatography (MEEKC) were used for the first and second dimensional separations, respectively. The effective separation lengths for both dimensions were 10 mm, and electrokinetic injection was used with field strength at 200 V cm(-1). After 80 s separation in the first CGE dimension, fractions were successfully transferred to a second MEEKC dimension for a short 10 s separation. We first demonstrate this 2D μ-CE separation by resolving five standard proteins with molecular weight (MW) ranging from 20 to 64 kDa. We also present a high peak capacity 3D landscape image of nitrosylated proteins from HT-29 cells before and following menadione (MQ) treatment to induce oxidative stress. Additionally, to illustrate the potential of the 2D μ-CE separation method for rapid profiling of oxidative stress-induced biomarkers implicated in AD disease, the nitrosylated protein fingerprints from 11-month-old AD transgenic mice brain and their age matched controls were also generated. To our knowledge, this is the first report on 2D profiling of nitrosylated proteins in biological samples on a microchip. The characteristics of this biomarker profiling will potentially serve as the screening for early detection of AD.  相似文献   

11.
A two-dimensional capillary electrophoresis platform, combining isoelectric focusing (IEF) and capillary zone electrophoresis (CZE), was established on a microchip with the channel width and depth as 100 mum and 40 mum, respectively. With polyacrylamide as permanent coating, EOF in the microchannel, which could impair the separation, was decreased to 3.4x10(-9)m(2).V(-1).s(-1), about 1/10 of that obtained in the uncoated set-up. During the separation, peptides were first focused by IEF in the first dimensional channel, and then directly driven into the perpendicular channel by controlling the applied voltages, and separated by CZE. Effects of various experimental parameters, including the electric field strength, channel length, and injection frequency from the first to the second dimensional separation channel, were studied. Under optimized condition, the digests of BSA and proteins extracted from E. coli were separated, and a peak capacity of 540 was obtained, which was far greater than that obtained by each single dimensional separation. All these results showed the promise of multidimensional separation on a microchip for the high-throughput and high-resolution analysis of complex samples.  相似文献   

12.
Zhan X  Desiderio DM 《Electrophoresis》2003,24(11):1834-1846
Two-dimensional polyacrylamide gel electrophoresis (PAGE), together with 2-D gel electrophoresis (GE) analysis software, is a common technique to analyze a complex proteome. In order to accurately locate the differentially expressed proteins in human pituitary macroadenoma tissues in our long-term research program to clarify the molecular mechanisms of macroadenoma formation, a reproducible separation system is needed. An immobilized pH-gradient dry gel-strip (IPG strip) has been extensively used for first-dimensional isoelectric focusing (IEF), and has achieved a high degree of reproducibility in the IEF direction. For the second dimension (SDS-PAGE), different types of gel systems are available, including horizontal vs. vertical gel systems, and gradient vs. constant-percentage gels. A typical horizontal system is the Multiphor II system that analyzes one gel at a time, using a precast gradient gel (180 x 245 x 0.5 mm), and a typical vertical system is the Dodeca system, which analyzes up to 12 gels at a time, using usually a single-concentration gel (190 x 205 x 1 mm). The present study evaluated the spatial and quantitative reproducibility of the two systems for the separation of the complex human pituitary proteome. PDQuest software was used to analyze the digitized gel-image data, and SPSS statistical software was used to analyze the data. The results demonstrated a high percentage (>99%) of protein-spot matches within each electrophoretic system. The Dodeca gel system demonstrated better between-gel reproducibility for spot position, higher resolution in the Sodium dodecyl sulfate (SDS)-PAGE direction, lower gel background, better spot quality, and higher reproducibility of the spot volume.  相似文献   

13.
Low-molecular-mass fluorescent compounds excitable in the near UV region with suitable acidobasic and electrophoretic properties are suggested as isoelectric point (pI) markers for isoelectric focusing (IEF) with UV photometric and UV excited fluorometric detection. The experimental set-up of capillary IEF with UV excited fluorometric detection and properties of new UV-induced fluorescent pI markers are given. The pI values of 18 new pI markers determined independently of IEF methods range from 2.1 to 10.3. The examples of separation of new pI markers together with derivatized proteins by capillary IEF with photometric or fluorometric detection are presented.  相似文献   

14.
We previously demonstrated the separation of proteins by isoelectric focusing (IEF) over pH 4-8 immobilized pH gradients (IPGs) over 54 cm (Poland et al., Electrophoresis 2003, 24, 1271). Here we show that similar results can be conveniently achieved using commercially available IPGs of appropriate pH ranges positioned end-on-end in series during electrophoresis, which we term "daisy chain IEF". Proteins efficiently electrophorese from one IPG to another during IEF by traversing buffer-filled porous bridges between the serial IPGs. A variety of materials can function as bridges, including paper, polyacrylamide gels or even IPGs. The quality of two-dimensional (2-D) protein patterns is not apparently worse than that generated by conventional IEF using the same individual IPGs. A major advantage of this method is that sample is consumed efficiently, without the requirement for preliminary steps, such as chamber IEF. This advantage is pronounced when working with extremely limited sources of samples, such as with clinical biopsies or cellular subfractions. The present study was limited by the commercial availability of suitable pH gradients. Proteomics analyses could be further improved if commercial vendors would manufacture IPGs with suitable pH ranges to achieve high resolution (approximately 100 cm) IEF separation of proteins in one electrophoretic step over the pH range 2-12.  相似文献   

15.
Zuo X  Speicher DW 《Electrophoresis》2000,21(14):3035-3047
In this study, metabolically radiolabeled Escherichia coli cell extracts were used to systematically evaluate protein recoveries at each step of two-dimensional (2-D) electrophoresis and using different sample application methods. Sample application using sample cups resulted in better protein recovery compared with sample loading by rehydration when the Multiphor system was used. At least 50% or more of an E. coli extract was lost when high protein amounts (500 microg) were loaded by rehydration using this system, which employs separate holders for rehydration and isoelectric focusing (IEF). In contrast, when the IPGphor system was used, rehydration sample loading consistently yielded the highest overall protein recoveries. These improved protein recoveries were due to integration of rehydration and electrophoretic separation in a single unit. Even at high protein loads (500 microg), less than 15-20% of the proteins were lost when proteins were loaded by rehydration using sample buffer containing 2% carrier ampholytes in the ceramic immobilized pH gradient (IPG) strip holders used for both rehydration and IEF. Regardless of the loading conditions used, carrier ampholytes in the sample buffer increased protein recoveries. Use of thiourea did not significantly affect protein recoveries but did improve protein resolution in 2-D gels as expected. In summary, these results show the best protein recoveries are obtained for all protein loads when samples are applied to IPG strips during rehydration using a single device for both rehydration and IEF. In contrast, the poorest recoveries are obtained when rehydration and IEF are performed in separate devices, and losses increase dramatically with increasing protein loads using this approach.  相似文献   

16.
高效凝胶过滤色谱法分离测定豆薯种子蛋白   总被引:5,自引:1,他引:5  
吴红京  郝冰  唐根源  林玉娟 《色谱》1997,15(2):153-155
用高效凝胶蛋白往分离豆薯种子蛋白租提液,结合光电二极管阵列检测器对分离的蛋白峰进行紫外光谱扫描来确认蛋白的纯度,测定了3种蛋白的分子量,采用邻苯二甲醛(OPA)柱后衍生法测定了豆薯种子蛋白的氨基酸含量。  相似文献   

17.
A miniature electrophoretic device is developed on the basis of a new isoelectric focusing (IEF) method, namely parallel isoelectric focusing. We report here the theory and the results of operation of a new parallel isoelectric device (PID). The main advantages and limitations of the method are discussed for miniaturization purposes. It is shown that the method guarantees the fast and complete separation of any complex protein mixtures under acceptable conditions, such as voltage source, temperature, size of the device, and separation process duration. It is shown that the main problem of PID miniaturization is the buffer design, and the relation between Immobiline buffer capacity and solution buffer capacity. The main experimental limitation of PID resolution is protein sensitivity to pH changes.  相似文献   

18.
《Electrophoresis》2018,39(8):1040-1047
Isoelectric focusing (IEF) is a powerful separation method, useful for resolving subtle changes in the isoelectric point of unlabeled proteins. While microfluidic IEF has reduced the separation times from hours in traditional benchtop IEF to minutes, the enclosed devices hinder post‐separation access to the sample for downstream analysis. The two‐layer open IEF device presented here comprises a photopatterned hydrogel lid layer containing the chemistries required for IEF and a thin polyacrylamide bottom layer in which the analytes are separated. The open IEF device produces comparable minimum resolvable difference in isoelectric point and gradient stability to enclosed microfluidic devices while providing post‐separation sample access by simple removal of the lid layer. Further, using simulations, we determine that the material properties and the length of the separation lanes are the primary factors that affect the electric field magnitude in the separation region. Finally, we demonstrate self‐indexed photomasks for alignment‐free fabrication of multi‐domain hydrogels. We leverage this approach to generate arrayed pH gradients with a total of 80 concurrent separation lanes, which to our knowledge is the first demonstration of multiple IEF separations in series addressed by a single pair of electrodes.  相似文献   

19.
A new isoelectric focusing (IEF) system for two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) has been proposed. In this system, a super-soft and tough IEF gel was achieved by casting polyacrylamide gel down to 2.0% T using a loose multifilament string (LMS) of nylon as a gel support. The IEF apparatus for the LMS-gel, fabricated from acrylic boards, had a cooling water chamber, and eliminated the need of electrode solutions by directly connecting the two ends of individual gels to platinum electrodes. The carrier ampholyte-generated pH gradients using the new IEF system was stable over a long duration of time and a wide range of voltages, and the IEF time became shorter using a 2.0% T gel than using a 4.0% T gel. Also, the LMS-gels prepared in different runs exhibited excellent reproducibility. The new IEF system was applied to 2-D PAGE of a chicken skeletal muscle extract, and it was found that the protein loading capacity, protein entry into the LMS-gels, and protein transfer efficiency from the first-dimensional to the second-dimensional gels were significantly improved by using a low-concentration (2.5% T) gel. Also, proteins of high molecular weight of more than 200 kDa were observed in the 2-D maps, and therefore the new IEF system has a very good potential to be applied for fast 2-D PAGE of high molecular-weight proteins.  相似文献   

20.
This paper describes a simple new approach toward improving resolution of two-dimensional (2-D) protein gels used to explore the mammalian proteome. The method employs sample prefractionation using solution-phase isoelectric focusing (IEF) to split the mammalian proteome into well-resolved pools. As crude samples are thus prefractionated by pI range, very-narrow-pH-range 2-D gels can be subsequently employed for protein separation. Using custom pH partition membranes and commercially available immobilized pH gradient (IPG) strips, we maximized the total separation distance and throughput of seven samples obtained by prefractionation. Both protein loading capacity and separation quality were higher than the values obtained by separation of fractionated samples on narrow-pH-range 2-D gels; the total effective IEF separation distance was ~82 cm over the pH range pH 3–10. This improved method for analyzing prefractionated samples on narrow-pH-range 2-D gels allows high protein resolution without the use of large gels, resulting in decreased costs and run times.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号